Theorems on tessellations by polygons
Sbornik. Mathematics, Tome 194 (2003) no. 6, pp. 879-895

Voir la notice de l'article provenant de la source Math-Net.Ru

What general regularity manifests itself in the fact that a triangle, and in general any convex polygon, cannot be tessellated by non-convex quadrangles? Another question: it is known that for $n>6$ the plane cannot be tessellated by convex $n$-gons if their diameters are bounded, while the areas are separated from zero; can this fact be generalized for non-convex polygons? In the present paper we introduce the characteristic $\chi(M)$ of a polygon $M$. We answer the above questions in terms of $\chi(M)$ and then study tessellations of the plane by $n$-gons equivalent to $M$, that is, with the same sequence of angles greater than and smaller than $\pi$.
@article{SM_2003_194_6_a4,
     author = {M. L. Gerver},
     title = {Theorems on tessellations by polygons},
     journal = {Sbornik. Mathematics},
     pages = {879--895},
     publisher = {mathdoc},
     volume = {194},
     number = {6},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_6_a4/}
}
TY  - JOUR
AU  - M. L. Gerver
TI  - Theorems on tessellations by polygons
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 879
EP  - 895
VL  - 194
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_6_a4/
LA  - en
ID  - SM_2003_194_6_a4
ER  - 
%0 Journal Article
%A M. L. Gerver
%T Theorems on tessellations by polygons
%J Sbornik. Mathematics
%D 2003
%P 879-895
%V 194
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2003_194_6_a4/
%G en
%F SM_2003_194_6_a4
M. L. Gerver. Theorems on tessellations by polygons. Sbornik. Mathematics, Tome 194 (2003) no. 6, pp. 879-895. http://geodesic.mathdoc.fr/item/SM_2003_194_6_a4/