Differentiability of maps of Carnot groups of Sobolev classes
Sbornik. Mathematics, Tome 194 (2003) no. 6, pp. 857-877

Voir la notice de l'article provenant de la source Math-Net.Ru

The $\mathscr P$-differentiability in the topology of the Sobolev space of weakly contact maps of Carnot groups is proved. The $\mathscr P$-differentiability in the sense of Pansu of contact maps in the class $W_p^1$, $p>\nu$, and other results are established as consequences. The method of proof is new even in the case of a Euclidean space and yields, for instance, a new proof of well-known results of Reshetnyak and Calderon–Zygmund on the differentiability of functions of Sobolev classes. In addition, a new proof of Lusin's condition $\mathscr N$ is given for quasimonotone maps in the class $W_\nu^1$. As a consequence, change-of-variables formulae are obtained for maps of Carnot groups.
@article{SM_2003_194_6_a3,
     author = {S. K. Vodop'yanov},
     title = {Differentiability of maps of  {Carnot} groups of {Sobolev} classes},
     journal = {Sbornik. Mathematics},
     pages = {857--877},
     publisher = {mathdoc},
     volume = {194},
     number = {6},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_6_a3/}
}
TY  - JOUR
AU  - S. K. Vodop'yanov
TI  - Differentiability of maps of  Carnot groups of Sobolev classes
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 857
EP  - 877
VL  - 194
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_6_a3/
LA  - en
ID  - SM_2003_194_6_a3
ER  - 
%0 Journal Article
%A S. K. Vodop'yanov
%T Differentiability of maps of  Carnot groups of Sobolev classes
%J Sbornik. Mathematics
%D 2003
%P 857-877
%V 194
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2003_194_6_a3/
%G en
%F SM_2003_194_6_a3
S. K. Vodop'yanov. Differentiability of maps of  Carnot groups of Sobolev classes. Sbornik. Mathematics, Tome 194 (2003) no. 6, pp. 857-877. http://geodesic.mathdoc.fr/item/SM_2003_194_6_a3/