Differentiability of maps of Carnot groups of Sobolev classes
Sbornik. Mathematics, Tome 194 (2003) no. 6, pp. 857-877 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The $\mathscr P$-differentiability in the topology of the Sobolev space of weakly contact maps of Carnot groups is proved. The $\mathscr P$-differentiability in the sense of Pansu of contact maps in the class $W_p^1$, $p>\nu$, and other results are established as consequences. The method of proof is new even in the case of a Euclidean space and yields, for instance, a new proof of well-known results of Reshetnyak and Calderon–Zygmund on the differentiability of functions of Sobolev classes. In addition, a new proof of Lusin's condition $\mathscr N$ is given for quasimonotone maps in the class $W_\nu^1$. As a consequence, change-of-variables formulae are obtained for maps of Carnot groups.
@article{SM_2003_194_6_a3,
     author = {S. K. Vodop'yanov},
     title = {Differentiability of maps of {Carnot} groups of {Sobolev} classes},
     journal = {Sbornik. Mathematics},
     pages = {857--877},
     year = {2003},
     volume = {194},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_6_a3/}
}
TY  - JOUR
AU  - S. K. Vodop'yanov
TI  - Differentiability of maps of Carnot groups of Sobolev classes
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 857
EP  - 877
VL  - 194
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_6_a3/
LA  - en
ID  - SM_2003_194_6_a3
ER  - 
%0 Journal Article
%A S. K. Vodop'yanov
%T Differentiability of maps of Carnot groups of Sobolev classes
%J Sbornik. Mathematics
%D 2003
%P 857-877
%V 194
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2003_194_6_a3/
%G en
%F SM_2003_194_6_a3
S. K. Vodop'yanov. Differentiability of maps of Carnot groups of Sobolev classes. Sbornik. Mathematics, Tome 194 (2003) no. 6, pp. 857-877. http://geodesic.mathdoc.fr/item/SM_2003_194_6_a3/

[1] Folland G. B., Stein I. M., Hardy spaces on homogeneous groups, Math. Notes, 28, Princeton Univ. Press, Princeton, 1982 | MR | Zbl

[2] Pansu P., “Métriques de Carnot – Carathéodory et quasiisométries des espaces symétriques de rang un”, Ann. of Math. (2), 119 (1989), 1–60 | DOI | MR

[3] Federer H., Geometric measure theory, Springer-Verlag, Berlin, 1969 | MR

[4] Vodopyanov S. K., Ukhlov A. D., “Approksimativno differentsiruemye preobrazovaniya i zamena peremennykh na nilpotentnykh gruppakh”, Sib. matem. zhurn., 37:1 (1996), 70–89 | MR | Zbl

[5] Vodopyanov S. K., “Monotonnye funktsii i kvazikonformnye otobrazheniya na gruppakh Karno”, Sib. matem. zhurn., 37:6 (1996), 1269–1295 | MR | Zbl

[6] Reshetnyak Yu. G., “Sobolevskie klassy funktsii so znacheniyami v metricheskom prostranstve”, Sib. matem. zhurn., 38:3 (1997), 657–675 | MR | Zbl

[7] Vodopyanov S. K., “Otobrazheniya s ogranichennym iskazheniem i konechnym iskazheniem na gruppakh Karno”, Sib. matem. zhurn., 40:4 (1999), 764–804 | MR

[8] Vodop'yanov S. K., “$\mathscr P$-differentiability on Carnot groups in different topologies and related topics”, Trudy po analizu i geometrii, ed. S. K. Vodopyanov, Izd-vo In-ta matematiki im. S. L. Soboleva SO RAN, Novosibirsk, 2000, 603–670 | MR | Zbl

[9] Reshetnyak Yu. G., “Obobschennye proizvodnye i differentsiruemost pochti vsyudu”, Matem. sb., 75:3 (1968), 323–334 | Zbl

[10] Reshetnyak Yu. G., Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982 | MR

[11] Vodopyanov S. K., “Topologicheskie i geometricheskie svoistva otobrazhenii klassov Soboleva s summiruemym yakobianom. I”, Sib. matem. zhurn., 41:1 (2000), 23–48 | MR | Zbl

[12] Jerison D., “The Poincaré inequality for vector fields satisfying Hörmander's condition”, Duke Math. J., 53:2 (1986), 503–523 | DOI | MR | Zbl

[13] Lu G., “Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications”, Rev. Mat. Iberoamericana, 8:3 (1992), 367–439 | MR | Zbl

[14] Lu G., “The sharp Poincaré inequality for free vector fields: An endpoint result”, Rev. Mat. Iberoamericana, 10:3 (1994), 453–466 | MR | Zbl

[15] Folland G. B., “Subelliptic estimates and function spaces on nilpotent Lie groups”, Ark. Mat., 13 (1975), 161–207 | DOI | MR | Zbl

[16] Vodopyanov S. K., Kudryavtseva N. A., “Normalnye semeistva otobrazhenii na gruppakh Karno”, Sib. matem. zhurn., 37:2 (1996), 273–286 | MR | Zbl

[17] Martio O., Malý J., “Lusin's condition (N) and mappings of the class $W^{1,n}$”, J. Reine Angew. Math., 485 (1995), 19–36 | MR

[18] Bojarski B., Iwaniec T., “Analytical foundations of the theory of quasiconformal mappings in $\mathbb R^n$”, Ann. Acad. Sci. Fenn. Math. Diss., 8 (1983), 257–324 | MR | Zbl

[19] Hajłasz P., “Sobolev spaces on an arbitrary metric space”, Potential Anal., 5 (1996), 403–415 | MR | Zbl

[20] Bagby T., Ziemer W. P., “Pointwise differentiability and absolute continuity”, Trans. Amer. Math. Soc., 191 (1974), 129–148 | DOI | MR | Zbl

[21] Calderón A. P., Zygmund A., “Local properties of solutions of elliptic partial differential equations”, Studia Math., 20 (1961), 171–225 | MR | Zbl