Convergence of the Rogers--Ramanujan continued fraction
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 194 (2003) no. 6, pp. 833-856
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Set $q=\exp(2\pi i\tau)$, where $\tau$ is an irrational number,
and let $R_q$ be the radius of holomorphy  of the Rogers–Ramanujan function
$$
G_q(z)=1+\sum_{n=1}^\infty z^n\frac{q^{n^2}}{(1-q)\dotsb(1-q^n)}\,.
$$
As is known, $R_q\leqslant 1$ and for each $\alpha\in[0,1]$
there exists $q=q(\alpha)$ such that $R_{q(\alpha)}=\alpha$.
It is proved here that the function $H_q(z)=G_q(z)/G_q(qz)$
is meromorphic not only in the disc $=\{|z|$,
but also in the disc $D=\{|z|1\}$, which is larger for $R_q1$; and that the Rogers–Ramanujan continued fraction converges to $H_q$ on compact subsets contained in $D\setminus\Omega_q$,  where $\Omega_q$ is the union of circles with centres at $z=0$ and passing through the poles of $H_q$.
The convergence of the Rogers–Ramanujan continued fraction in the domain 
$\Bigl\{|z|\max\bigl(R_q,\frac1{2+|1+q|}\bigr)\Bigr\}\setminus\Omega_q$
was established earlier by Lubinsky.
			
            
            
            
          
        
      @article{SM_2003_194_6_a2,
     author = {V. I. Buslaev},
     title = {Convergence of the {Rogers--Ramanujan} continued fraction},
     journal = {Sbornik. Mathematics},
     pages = {833--856},
     publisher = {mathdoc},
     volume = {194},
     number = {6},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_6_a2/}
}
                      
                      
                    V. I. Buslaev. Convergence of the Rogers--Ramanujan continued fraction. Sbornik. Mathematics, Tome 194 (2003) no. 6, pp. 833-856. http://geodesic.mathdoc.fr/item/SM_2003_194_6_a2/
