Convergence of the Rogers--Ramanujan continued fraction
Sbornik. Mathematics, Tome 194 (2003) no. 6, pp. 833-856

Voir la notice de l'article provenant de la source Math-Net.Ru

Set $q=\exp(2\pi i\tau)$, where $\tau$ is an irrational number, and let $R_q$ be the radius of holomorphy of the Rogers–Ramanujan function $$ G_q(z)=1+\sum_{n=1}^\infty z^n\frac{q^{n^2}}{(1-q)\dotsb(1-q^n)}\,. $$ As is known, $R_q\leqslant 1$ and for each $\alpha\in[0,1]$ there exists $q=q(\alpha)$ such that $R_{q(\alpha)}=\alpha$. It is proved here that the function $H_q(z)=G_q(z)/G_q(qz)$ is meromorphic not only in the disc $=\{|z|$, but also in the disc $D=\{|z|1\}$, which is larger for $R_q1$; and that the Rogers–Ramanujan continued fraction converges to $H_q$ on compact subsets contained in $D\setminus\Omega_q$, where $\Omega_q$ is the union of circles with centres at $z=0$ and passing through the poles of $H_q$. The convergence of the Rogers–Ramanujan continued fraction in the domain $\Bigl\{|z|\max\bigl(R_q,\frac1{2+|1+q|}\bigr)\Bigr\}\setminus\Omega_q$ was established earlier by Lubinsky.
@article{SM_2003_194_6_a2,
     author = {V. I. Buslaev},
     title = {Convergence of the {Rogers--Ramanujan} continued fraction},
     journal = {Sbornik. Mathematics},
     pages = {833--856},
     publisher = {mathdoc},
     volume = {194},
     number = {6},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_6_a2/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - Convergence of the Rogers--Ramanujan continued fraction
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 833
EP  - 856
VL  - 194
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_6_a2/
LA  - en
ID  - SM_2003_194_6_a2
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T Convergence of the Rogers--Ramanujan continued fraction
%J Sbornik. Mathematics
%D 2003
%P 833-856
%V 194
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2003_194_6_a2/
%G en
%F SM_2003_194_6_a2
V. I. Buslaev. Convergence of the Rogers--Ramanujan continued fraction. Sbornik. Mathematics, Tome 194 (2003) no. 6, pp. 833-856. http://geodesic.mathdoc.fr/item/SM_2003_194_6_a2/