Extrapolation properties of the~scale of~$L_p$-spaces
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 194 (2003) no. 6, pp. 813-832
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A new class of extrapolation functors on the scale of $L_p$-spaces $(1$ is  introduced, allowing one  to take for its “limiting spaces” two symmetric spaces “close” to $L_\infty$ and $L_1$.
Crucial here are the extrapolation relations for the Peetre $\mathscr K$- and $\mathscr J$-functionals for the Banach couples $(L_\infty,\operatorname{Exp} L^\beta)$ and $(L_1,L(\log L)^{1/\beta})$, respectively $(\operatorname{Exp} L^\beta$
and $L(\log L)^{1/\beta}$, $\beta>0$, are  Zygmund spaces).
The real method of operator interpolation is used.
			
            
            
            
          
        
      @article{SM_2003_194_6_a1,
     author = {S. V. Astashkin},
     title = {Extrapolation properties of the~scale of~$L_p$-spaces},
     journal = {Sbornik. Mathematics},
     pages = {813--832},
     publisher = {mathdoc},
     volume = {194},
     number = {6},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_6_a1/}
}
                      
                      
                    S. V. Astashkin. Extrapolation properties of the~scale of~$L_p$-spaces. Sbornik. Mathematics, Tome 194 (2003) no. 6, pp. 813-832. http://geodesic.mathdoc.fr/item/SM_2003_194_6_a1/
