is introduced, allowing one to take for its “limiting spaces” two symmetric spaces “close” to $L_\infty$ and $L_1$. Crucial here are the extrapolation relations for the Peetre $\mathscr K$- and $\mathscr J$-functionals for the Banach couples $(L_\infty,\operatorname{Exp} L^\beta)$ and $(L_1,L(\log L)^{1/\beta})$, respectively $(\operatorname{Exp} L^\beta$ and $L(\log L)^{1/\beta}$, $\beta>0$, are Zygmund spaces). The real method of operator interpolation is used.
@article{SM_2003_194_6_a1,
author = {S. V. Astashkin},
title = {Extrapolation properties of the~scale of~$L_p$-spaces},
journal = {Sbornik. Mathematics},
pages = {813--832},
year = {2003},
volume = {194},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2003_194_6_a1/}
}
S. V. Astashkin. Extrapolation properties of the scale of $L_p$-spaces. Sbornik. Mathematics, Tome 194 (2003) no. 6, pp. 813-832. http://geodesic.mathdoc.fr/item/SM_2003_194_6_a1/
[1] Yano S., “An extrapolation theorem”, J. Math. Soc. Japan., 3 (1951), 296–305 | MR | Zbl
[2] Zigmund A., Trigonometricheskie ryady, t. 2, Mir, M., 1965 | MR
[3] Jawerth B., Milman M., “Extrapolation theory with applications”, Mem. Amer. Math. Soc., 440 (1991) | MR | Zbl
[4] Jawerth B., Milman M., “New results and applications of extrapolation theory”, Israel Math. Conf. Proc., 5 (1992), 81–105 | MR | Zbl
[5] Milman M., Extrapolation and optimal decompositions: with applications to analysis, Lecture Notes in Math., 1580, Springer-Verlag, Berlin, 1994 | MR | Zbl
[6] Carro M. J., “New extrapolation estimates”, J. Funct. Anal., 174 (2000), 155–166 | DOI | MR | Zbl
[7] Carro M. J., Martin J., “On embedding properties of some extrapolation spaces”, Function spaces, interpolation theory and related topics, Proc. of the internat. conf. in honour of J. Peetre (Lund, Sweden, August 17–22, 2000), Walter de Gruyter, Berlin, 2002, 241–248 | MR
[8] Khinchine A., “Über dyadiche Bruche”, Math. Z., 18 (1923), 109–116 | DOI | MR
[9] Hitczenko P., “Domination inequality for martingale transforms of a Rademacher sequence”, Israel J. Math., 84 (1993), 161–178 | DOI | MR | Zbl
[10] Astashkin S. V., “Ob interpolyatsii podprostranstv simmetrichnykh prostranstv, porozhdennykh sistemoi Rademakhera”, Izv. RAEN. Ser. MMMIU, 1:1 (1997), 18–35 | MR | Zbl
[11] Astashkin S. V., “O ryadakh po sisteme Rademakhera, “blizkikh” k $L_\infty$”, Funkts. analiz i ego prilozh., 32:3 (1998), 62–65 | MR | Zbl
[12] Berg I., Lefstrem I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980
[13] Brudnyi Yu. A., Krugljak N. Ya., Interpolation functors and interpolation spaces, North-Holland, Amsterdam, 1991 | MR | Zbl
[14] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR
[15] Lindenstrauss J., Tzafriri L., Classical Banach spaces. II: Function spaces, Springer-Verlag, Berlin, 1979 | MR | Zbl
[16] Bennett C., Rudnick K., “On Lorentz–Zygmund spaces”, Dissertationes Math. (Rozprawy Mat.), 175 (1980), 5–67 | MR
[17] Rutitskii Ya. B., “O nekotorykh klassakh izmerimykh funktsii”, UMN, 20:4 (1965), 205–208
[18] Lorentz G. G., “Relations between function spaces”, Proc. Amer. Math. Soc., 12 (1961), 127–132 | DOI | MR | Zbl
[19] Cwikel M., Nilsson P., “Interpolation of Marcinkiewicz spaces”, Math. Scand., 56 (1985), 29–42 | MR | Zbl
[20] Lukomskii S. F., “O skhodimosti ryadov Uolsha v prostranstvakh, blizkikh k $L_\infty$”, Matem. zametki, 70:6 (2001), 882–889 | MR | Zbl
[21] Kalton N. J., “Calderon couples of rearrangement invariant spaces”, Studia Math., 106:3 (1993), 233–277 | MR | Zbl
[22] Astashkin S. V, “Koeffitsienty Fure–Rademakhera funktsii iz simmetrichnykh prostranstv”, Sib. matem. zhurn., 41:4 (2000), 729–739 | MR | Zbl