@article{SM_2003_194_6_a0,
author = {B. P. Andreianov},
title = {On viscous limit solutions of the {Riemann} problem for the equations of isentropic gas dynamics in {Eulerian} coordinates},
journal = {Sbornik. Mathematics},
pages = {793--811},
year = {2003},
volume = {194},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2003_194_6_a0/}
}
TY - JOUR AU - B. P. Andreianov TI - On viscous limit solutions of the Riemann problem for the equations of isentropic gas dynamics in Eulerian coordinates JO - Sbornik. Mathematics PY - 2003 SP - 793 EP - 811 VL - 194 IS - 6 UR - http://geodesic.mathdoc.fr/item/SM_2003_194_6_a0/ LA - en ID - SM_2003_194_6_a0 ER -
B. P. Andreianov. On viscous limit solutions of the Riemann problem for the equations of isentropic gas dynamics in Eulerian coordinates. Sbornik. Mathematics, Tome 194 (2003) no. 6, pp. 793-811. http://geodesic.mathdoc.fr/item/SM_2003_194_6_a0/
[1] Kim Y.-J., A self-similar viscosity approach for the Riemann problem in isentropic gas dynamics and the structure of solutions, Preprint, Univ. Madison, 1999
[2] Tzavaras A. E., “Elastic as limit of viscoelastic response, in a context of self-similar viscous limits”, J. Differential Equations, 123:1 (1995), 305–341 | DOI | MR | Zbl
[3] Tzavaras A. E., “Wave interactions and variation estimates for self-similar zero-viscosity limits in systems of conservation laws”, Arch. Ration. Mech. Anal., 135 (1996), 1–60 | DOI | MR | Zbl
[4] Kalashnikov A. S., “Postroenie obobschennykh reshenii kvazilineinykh uravnenii pervogo poryadka bez uslovii vypuklosti kak predelov reshenii parabolicheskikh uravnenii s malym parametrom”, Dokl. AN SSSR, 127:1 (1959), 27–30 | MR | Zbl
[5] Tupchiev V. A., “Raspad proizvolnogo razryva dlya sistemy dvukh kvazilineinykh uravnenii pervogo poryadka”, ZhVMiMF, 4 (1964), 817–825 | MR | Zbl
[6] Tupchiev V. A., “Zadacha o raspade proizvolnogo razryva dlya sistemy kvazilineinykh uravnenii bez uslovii vypuklosti”, ZhVMiMF, 6 (1966), 527–547 | MR | Zbl
[7] Tupchiev V. A., “O metode vvedeniya vyazkosti pri izuchenii zadach s raspadom razryva”, Dokl. AN SSSR, 211 (1973), 55–58 | MR | Zbl
[8] Dafermos C. M., “Solutions of the Riemann problem for a class of hyperbolic systems of conservation laws by the viscosity method”, Arch. Ration. Mech. Anal., 52:1 (1973), 1–9 | DOI | MR | Zbl
[9] Dafermos C. M., “Structure of solutions of the Riemann problem for hyperbolic systems of conservation laws”, Arch. Ration. Mech. Anal., 53:3 (1974), 203–217 | DOI | MR | Zbl
[10] Dafermos C. M., DiPerna R., “The Riemann problem for certain classes of hyperbolic systems of conservation laws”, J. Differential Equations, 20 (1976), 90–114 | DOI | MR | Zbl
[11] Dafermos C. M., “Admissible wave fans in nonlinear hyperbolic systems”, Arch. Ration. Mech. Anal., 106 (1989), 243–260 | DOI | MR | Zbl
[12] Tzavaras A. E., “Viscosity and relaxation approximations for hyperbolic systems of conservation laws”, An introduction to recent developments in theory and numerics of conservation laws, eds. D. Kroener et al., Springer-Verlag, Berlin, 1999, 73–122 | MR | Zbl
[13] Slemrod M., Tzavaras A. E., “A limiting viscosity approach for the Riemann problem in isentropic gas dynamics”, Indiana Univ. Math. J., 38 (1989), 1047–1074 | DOI | MR | Zbl
[14] Fan H. T., “The structure of solutions of gas dynamic equations and the formation of the vaccuum state”, Quart. Appl. Math., 49 (1991), 29–48 | MR | Zbl
[15] Andreianov B., “The Riemann problem for $p$-systems with continuous flux function”, Ann. Fac. Sci.Toulouse Math. (6), 8:3 (1999), 353–367 | MR | Zbl
[16] Leibovich L., “Solutions of the Riemann problem for hyperbolic systems of quasilinear equations without convexity conditions”, J. Math. Anal. Appl., 45:3 (1974), 81–90 | DOI | MR | Zbl
[17] Krejčí P., Straškraba I., “A uniqueness criterion for the Riemann problem”, Hiroshima Math. J., 27:2 (1997), 307–346 | MR | Zbl
[18] Hoff D., Smoller J., “Non-formation of vacuum states for compressible Navier–Stokes equations”, Comm. Math. Phys., 216:2 (2001), 255–276 | DOI | MR | Zbl
[19] Lax P. D., “Hyperbolic systems of conservation laws II”, Comm. Pure Appl. Math., 10:4 (1957), 537–566 | DOI | MR | Zbl