On viscous limit solutions of the Riemann problem for the equations of isentropic gas dynamics in Eulerian coordinates
Sbornik. Mathematics, Tome 194 (2003) no. 6, pp. 793-811

Voir la notice de l'article provenant de la source Math-Net.Ru

For the problem $\rho_t+(\rho u)_x=0$, $(\rho u)_t+(\rho u^2+p(\rho))_x=0$, $(\rho,u)\big|_{t=0,\,x0}=(\rho_-,u_-)$, $(\rho,u)\big|_{t=0,\,x>0}=(\rho_+,u_+)$ one shows the existence and uniqueness of a solution obtainable as a limit as $\varepsilon$ tends to zero of the bounded self-similar solutions of the regularized problem with additional viscosity term $\varepsilon tu_{xx}$, $\varepsilon>0$, in the second equation. The structure of the solutions is described in detail, in particular, when they contain vacuum states.
@article{SM_2003_194_6_a0,
     author = {B. P. Andreianov},
     title = {On viscous limit solutions of the {Riemann} problem for the equations of isentropic gas dynamics in {Eulerian} coordinates},
     journal = {Sbornik. Mathematics},
     pages = {793--811},
     publisher = {mathdoc},
     volume = {194},
     number = {6},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_6_a0/}
}
TY  - JOUR
AU  - B. P. Andreianov
TI  - On viscous limit solutions of the Riemann problem for the equations of isentropic gas dynamics in Eulerian coordinates
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 793
EP  - 811
VL  - 194
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_6_a0/
LA  - en
ID  - SM_2003_194_6_a0
ER  - 
%0 Journal Article
%A B. P. Andreianov
%T On viscous limit solutions of the Riemann problem for the equations of isentropic gas dynamics in Eulerian coordinates
%J Sbornik. Mathematics
%D 2003
%P 793-811
%V 194
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2003_194_6_a0/
%G en
%F SM_2003_194_6_a0
B. P. Andreianov. On viscous limit solutions of the Riemann problem for the equations of isentropic gas dynamics in Eulerian coordinates. Sbornik. Mathematics, Tome 194 (2003) no. 6, pp. 793-811. http://geodesic.mathdoc.fr/item/SM_2003_194_6_a0/