Impenetrability condition for a~degenerate point of a~one-term symmetric differential operator of even order
Sbornik. Mathematics, Tome 194 (2003) no. 5, pp. 745-774
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $a(x)\in C^\infty[0,h]$, $b(x)\in C^\infty[-h,0]$,
$h>0$, be real functions not vanishing on their definition intervals.
For fixed $p>0$ and $q>0$ one considers the differential expressions
\begin{align*}
s_p^+[f](x)=(-1)^n(x^pa(x)f^{(n)})^{(n)}(x),
\\
s_q^-[f](x)=(-1)^n((-x)^qb(x)f^{(n)})^{(n)}(x)
\end{align*}
of arbitrary even order $2n$
degenerate at the point $x=0$.
Let $H_p^+$ and $H_q^-$ be the minimal symmetric
operators induced by $s_p^+[f](x)$ and $s_q^-[f](x)$
in the Hilbert spaces $L^2(0,h)$ and $L^2(-h,0)$,
respectively.
“Sewing together” the differential expressions $s_p^+[f](x)$ and $s_q^-[f](x)$
at $x=0$ one obtains a new differential expression $s_{pq}[f](x)$, $x\in[-h,h]$,
which is degenerate at the same point, an interior point of $[-h,h]$.
Under certain constraints on $p$ and $q$ the differential expression $s_{pq}[f](x)$ gives rise to a minimal symmetric
operator $H_{pq}$ in $L^2(-h,h)$ which is a symmetric extension of the orthogonal sum $H_q^-\oplus H_p^+$.
The point $x=0$ is called in this paper an interior barrier for $s_{pq}[f](x)$.
Conditions ensuring the equality $H_{pq}=H_q\oplus H_p$
are found. It is natural to call an interior barrier an impenetrable interior interface if this equality holds and it is a penetrable interior interface if it fails. The main result of this paper is as follows: the point $x=0$ is an impenetrable interior interface if $p,q\geqslant 2n-\frac12$, and this condition is best possible in a certain sense.
@article{SM_2003_194_5_a4,
author = {Yu. B. Orochko},
title = {Impenetrability condition for a~degenerate point of a~one-term symmetric differential operator of even order},
journal = {Sbornik. Mathematics},
pages = {745--774},
publisher = {mathdoc},
volume = {194},
number = {5},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2003_194_5_a4/}
}
TY - JOUR AU - Yu. B. Orochko TI - Impenetrability condition for a~degenerate point of a~one-term symmetric differential operator of even order JO - Sbornik. Mathematics PY - 2003 SP - 745 EP - 774 VL - 194 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2003_194_5_a4/ LA - en ID - SM_2003_194_5_a4 ER -
Yu. B. Orochko. Impenetrability condition for a~degenerate point of a~one-term symmetric differential operator of even order. Sbornik. Mathematics, Tome 194 (2003) no. 5, pp. 745-774. http://geodesic.mathdoc.fr/item/SM_2003_194_5_a4/