Impenetrability condition for a degenerate point of a one-term symmetric differential operator of even order
Sbornik. Mathematics, Tome 194 (2003) no. 5, pp. 745-774 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $a(x)\in C^\infty[0,h]$, $b(x)\in C^\infty[-h,0]$, $h>0$, be real functions not vanishing on their definition intervals. For fixed $p>0$ and $q>0$ one considers the differential expressions \begin{align*} s_p^+[f](x)&=(-1)^n(x^pa(x)f^{(n)})^{(n)}(x), \\ s_q^-[f](x)&=(-1)^n((-x)^qb(x)f^{(n)})^{(n)}(x) \end{align*} of arbitrary even order $2n$ degenerate at the point $x=0$. Let $H_p^+$ and $H_q^-$ be the minimal symmetric operators induced by $s_p^+[f](x)$ and $s_q^-[f](x)$ in the Hilbert spaces $L^2(0,h)$ and $L^2(-h,0)$, respectively. “Sewing together” the differential expressions $s_p^+[f](x)$ and $s_q^-[f](x)$ at $x=0$ one obtains a new differential expression $s_{pq}[f](x)$, $x\in[-h,h]$, which is degenerate at the same point, an interior point of $[-h,h]$. Under certain constraints on $p$ and $q$ the differential expression $s_{pq}[f](x)$ gives rise to a minimal symmetric operator $H_{pq}$ in $L^2(-h,h)$ which is a symmetric extension of the orthogonal sum $H_q^-\oplus H_p^+$. The point $x=0$ is called in this paper an interior barrier for $s_{pq}[f](x)$. Conditions ensuring the equality $H_{pq}=H_q\oplus H_p$ are found. It is natural to call an interior barrier an impenetrable interior interface if this equality holds and it is a penetrable interior interface if it fails. The main result of this paper is as follows: the point $x=0$ is an impenetrable interior interface if $p,q\geqslant 2n-\frac12$, and this condition is best possible in a certain sense.
@article{SM_2003_194_5_a4,
     author = {Yu. B. Orochko},
     title = {Impenetrability condition for a~degenerate point of a~one-term symmetric differential operator of even order},
     journal = {Sbornik. Mathematics},
     pages = {745--774},
     year = {2003},
     volume = {194},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_5_a4/}
}
TY  - JOUR
AU  - Yu. B. Orochko
TI  - Impenetrability condition for a degenerate point of a one-term symmetric differential operator of even order
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 745
EP  - 774
VL  - 194
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_5_a4/
LA  - en
ID  - SM_2003_194_5_a4
ER  - 
%0 Journal Article
%A Yu. B. Orochko
%T Impenetrability condition for a degenerate point of a one-term symmetric differential operator of even order
%J Sbornik. Mathematics
%D 2003
%P 745-774
%V 194
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2003_194_5_a4/
%G en
%F SM_2003_194_5_a4
Yu. B. Orochko. Impenetrability condition for a degenerate point of a one-term symmetric differential operator of even order. Sbornik. Mathematics, Tome 194 (2003) no. 5, pp. 745-774. http://geodesic.mathdoc.fr/item/SM_2003_194_5_a4/

[1] Danford N., Shvarts Dzh. T., Lineinye operatory. Ch. II. Spektralnaya teoriya, Mir, M., 1966

[2] Orochko Yu. B., “Primery simmetricheskikh differentsialnykh operatorov na pryamoi s beskonechnymi indeksami defekta”, Funkts. analiz i ego prilozh., 28:2 (1994), 69–72 | MR | Zbl

[3] Tribel Kh., Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980 | MR

[4] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl

[5] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[6] Polia G., Segë G., Zadachi i teoremy iz analiza, Ch. I, Nauka, M., 1978

[7] Gelfond A. O., Ischislenie konechnykh raznostei, GITTL, M.–L., 1952

[8] Rapoport I. M., O nekotorykh asimptoticheskikh metodakh v teorii differentsialnykh uravnenii, Izd-vo AN USSR, Kiev, 1954