Homogenization for elasticity problems on periodic networks
Sbornik. Mathematics, Tome 194 (2003) no. 5, pp. 697-732 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is a noticeable feature of elasticity problems on periodic structures depending on two geometric parameters that their homogenization has a non-classical nature. The most complicated kind of this non-classical homogenization occurs on structures of so-called critical thickness. Homogenization for periodic networks of this type is presented in the paper.
@article{SM_2003_194_5_a2,
     author = {V. V. Zhikov and S. E. Pastukhova},
     title = {Homogenization for elasticity problems on periodic networks},
     journal = {Sbornik. Mathematics},
     pages = {697--732},
     year = {2003},
     volume = {194},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_5_a2/}
}
TY  - JOUR
AU  - V. V. Zhikov
AU  - S. E. Pastukhova
TI  - Homogenization for elasticity problems on periodic networks
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 697
EP  - 732
VL  - 194
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_5_a2/
LA  - en
ID  - SM_2003_194_5_a2
ER  - 
%0 Journal Article
%A V. V. Zhikov
%A S. E. Pastukhova
%T Homogenization for elasticity problems on periodic networks
%J Sbornik. Mathematics
%D 2003
%P 697-732
%V 194
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2003_194_5_a2/
%G en
%F SM_2003_194_5_a2
V. V. Zhikov; S. E. Pastukhova. Homogenization for elasticity problems on periodic networks. Sbornik. Mathematics, Tome 194 (2003) no. 5, pp. 697-732. http://geodesic.mathdoc.fr/item/SM_2003_194_5_a2/

[1] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[2] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl

[3] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, Izd-vo MGU, M., 1990 | Zbl

[4] Zhikov V. V., “Usrednenie zadach teorii uprugosti na singulyarnykh strukturakh”, Dokl. AN, 380:6 (2001), 741–745 | MR | Zbl

[5] Zhikov V. V., “Usrednenie zadach teorii uprugosti na singulyarnykh strukturakh”, Izv. RAN. Ser. matem., 66:2 (2002), 81–148 | MR | Zbl

[6] Nazarov S. A., “Korn's inequalities for functions of spatial bodies and thin rods”, Math. Methods Appl. Sci., 20:3 (1997), 219–243 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[7] Nazarov S. A., Slutskii A. S., “Proizvolnye ploskie sistemy anizotropnykh balok”, Trudy MIRAN, 236, 2002, 234–261 | Zbl

[8] Nazarov S. A., “Neravenstva Korna, asimptoticheski tochnye dlya tonkikh oblastei”, Vestn. SPbGU. Ser. 1, 2:8 (1992), 19–24 | MR | Zbl

[9] Zhikov V. V., Pastukhova S. E., “O neravenstvakh Korna na tonkikh periodicheskikh strukturakh”, Dokl. RAN, 388:5 (2003), 588–592 | MR | Zbl

[10] Nguetseng G., “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20 (1989), 608–623 | DOI | MR | Zbl

[11] Allaire G., “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23 (1992), 1482–1518 | DOI | MR | Zbl

[12] Zhikov V. V., “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Matem. sb., 191:7 (2000), 31–72 | MR | Zbl

[13] Chechkin G. A., Jikov V. V., Lukkassen D., Piatnitski A. L., “On homogenization of networks and junctions”, Asymptot. Anal., 30:1 (2002), 61–80 | MR | Zbl