Homogenization for elasticity problems on periodic networks
Sbornik. Mathematics, Tome 194 (2003) no. 5, pp. 697-732

Voir la notice de l'article provenant de la source Math-Net.Ru

It is a noticeable feature of elasticity problems on periodic structures depending on two geometric parameters that their homogenization has a non-classical nature. The most complicated kind of this non-classical homogenization occurs on structures of so-called critical thickness. Homogenization for periodic networks of this type is presented in the paper.
@article{SM_2003_194_5_a2,
     author = {V. V. Zhikov and S. E. Pastukhova},
     title = {Homogenization for  elasticity problems on periodic networks},
     journal = {Sbornik. Mathematics},
     pages = {697--732},
     publisher = {mathdoc},
     volume = {194},
     number = {5},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_5_a2/}
}
TY  - JOUR
AU  - V. V. Zhikov
AU  - S. E. Pastukhova
TI  - Homogenization for  elasticity problems on periodic networks
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 697
EP  - 732
VL  - 194
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_5_a2/
LA  - en
ID  - SM_2003_194_5_a2
ER  - 
%0 Journal Article
%A V. V. Zhikov
%A S. E. Pastukhova
%T Homogenization for  elasticity problems on periodic networks
%J Sbornik. Mathematics
%D 2003
%P 697-732
%V 194
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2003_194_5_a2/
%G en
%F SM_2003_194_5_a2
V. V. Zhikov; S. E. Pastukhova. Homogenization for  elasticity problems on periodic networks. Sbornik. Mathematics, Tome 194 (2003) no. 5, pp. 697-732. http://geodesic.mathdoc.fr/item/SM_2003_194_5_a2/