Anticanonical models of three-dimensional Fano varieties of degree 4
Sbornik. Mathematics, Tome 194 (2003) no. 4, pp. 617-640 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

All birational transformations of three Fano 3-folds of degree 4 into canonical Fano 3-folds, elliptic fibrations, and fibrations of K3 surfaces are described.
@article{SM_2003_194_4_a7,
     author = {I. A. Cheltsov},
     title = {Anticanonical models of three-dimensional {Fano} varieties of degree~4},
     journal = {Sbornik. Mathematics},
     pages = {617--640},
     year = {2003},
     volume = {194},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_4_a7/}
}
TY  - JOUR
AU  - I. A. Cheltsov
TI  - Anticanonical models of three-dimensional Fano varieties of degree 4
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 617
EP  - 640
VL  - 194
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_4_a7/
LA  - en
ID  - SM_2003_194_4_a7
ER  - 
%0 Journal Article
%A I. A. Cheltsov
%T Anticanonical models of three-dimensional Fano varieties of degree 4
%J Sbornik. Mathematics
%D 2003
%P 617-640
%V 194
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2003_194_4_a7/
%G en
%F SM_2003_194_4_a7
I. A. Cheltsov. Anticanonical models of three-dimensional Fano varieties of degree 4. Sbornik. Mathematics, Tome 194 (2003) no. 4, pp. 617-640. http://geodesic.mathdoc.fr/item/SM_2003_194_4_a7/

[1] Kawamata Y., Matsuda K., Matsuki K., “Introduction to the minimal model problem”, Adv. Stud. Pure Math., 10 (1987), 283–360 | MR | Zbl

[2] Cheltsov I., “Log models of birationally rigid varieties”, J. Math. Sci. (New York), 102 (2000), 3843–3875 | DOI | MR | Zbl

[3] Iskovskikh V. A., Manin Yu. I., “Trekhmernye kvartiki i kontrprimery k probleme Lyurota”, Matem. sb., 86 (1971), 140–166 | MR | Zbl

[4] Iskovskikh V. A., “Birational automorphisms of three-dimensional algebraic varieties”, J. Soviet Math., 13 (1980), 815–868 | DOI | MR | Zbl

[5] Pukhlikov A. V., “Biratsionalnye avtomorfizmy trekhmernoi kvartiki s prosteishei osobennostyu”, Matem. sb., 135 (1988), 472–496 | MR | Zbl

[6] Cheltsov I. A., “Mnogoobrazie Fano s edinstvennoi ellipticheskoi strukturoi”, Matem. sb., 192:5 (2001), 145–156 | MR | Zbl

[7] Cheltsov I. A., “O gladkoi chetyrekhmernoi kvintike”, Matem. sb., 191:9 (2000), 139–160 | MR | Zbl

[8] Iskovskikh V. A., “Biratsionalnaya zhestkost giperpoverkhnostei Fano v ramkakh teorii Mori”, UMN, 56:2 (2001), 3–86 | MR | Zbl

[9] Corti A., “Singularities of linear systems and 3-fold birational geometry”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 259–312 | MR | Zbl