Anticanonical models of three-dimensional Fano varieties of degree~4
Sbornik. Mathematics, Tome 194 (2003) no. 4, pp. 617-640

Voir la notice de l'article provenant de la source Math-Net.Ru

All birational transformations of three Fano 3-folds of degree 4 into canonical Fano 3-folds, elliptic fibrations, and fibrations of K3 surfaces are described.
@article{SM_2003_194_4_a7,
     author = {I. A. Cheltsov},
     title = {Anticanonical models of three-dimensional {Fano} varieties of degree~4},
     journal = {Sbornik. Mathematics},
     pages = {617--640},
     publisher = {mathdoc},
     volume = {194},
     number = {4},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_4_a7/}
}
TY  - JOUR
AU  - I. A. Cheltsov
TI  - Anticanonical models of three-dimensional Fano varieties of degree~4
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 617
EP  - 640
VL  - 194
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_4_a7/
LA  - en
ID  - SM_2003_194_4_a7
ER  - 
%0 Journal Article
%A I. A. Cheltsov
%T Anticanonical models of three-dimensional Fano varieties of degree~4
%J Sbornik. Mathematics
%D 2003
%P 617-640
%V 194
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2003_194_4_a7/
%G en
%F SM_2003_194_4_a7
I. A. Cheltsov. Anticanonical models of three-dimensional Fano varieties of degree~4. Sbornik. Mathematics, Tome 194 (2003) no. 4, pp. 617-640. http://geodesic.mathdoc.fr/item/SM_2003_194_4_a7/