Equivariant compactifications of reductive groups
Sbornik. Mathematics, Tome 194 (2003) no. 4, pp. 589-616 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Under study are equivariant projective compactifications of reductive groups that can be obtained as the closure of the image of the group in the space of projective linear operators of a representation. The structure and the mutual position of the orbits of the action of the direct square of the group acting by left/right multiplication and the local structure of the compactification in the neighbourhood of a closed orbit are described. Several conditions for the normality and smoothness of a compactification are obtained. The methods used are based on the theory of equivariant embeddings of spherical homogeneous spaces and reductive algebraic semigroups.
@article{SM_2003_194_4_a6,
     author = {D. A. Timashev},
     title = {Equivariant compactifications of reductive groups},
     journal = {Sbornik. Mathematics},
     pages = {589--616},
     year = {2003},
     volume = {194},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_4_a6/}
}
TY  - JOUR
AU  - D. A. Timashev
TI  - Equivariant compactifications of reductive groups
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 589
EP  - 616
VL  - 194
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_4_a6/
LA  - en
ID  - SM_2003_194_4_a6
ER  - 
%0 Journal Article
%A D. A. Timashev
%T Equivariant compactifications of reductive groups
%J Sbornik. Mathematics
%D 2003
%P 589-616
%V 194
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2003_194_4_a6/
%G en
%F SM_2003_194_4_a6
D. A. Timashev. Equivariant compactifications of reductive groups. Sbornik. Mathematics, Tome 194 (2003) no. 4, pp. 589-616. http://geodesic.mathdoc.fr/item/SM_2003_194_4_a6/

[1] Semple J. G., “The variety whose points represent complete collineations of $S_r$ on $S'_r$”, Rend. Mat. Appl. (5), 10 (1951), 201–208 | MR | Zbl

[2] Neretin Yu. A., “Hinges and the Study–Semple–Satake–Furstenberg–De Concini–Procesi–Oshima boundary”, Kirillov's seminar on representation theory, Amer. Math. Soc. Transl. Ser. 2, 181, Amer. Math. Soc., Providence, RI, 1998, 165–230 | MR | Zbl

[3] De Concini C., Procesi C., “Complete symmetric varieties”, Lecture Notes in Math., 996, 1983, 1–44 | MR | Zbl

[4] De Concini C., Procesi C., “Complete symmetric varieties. II”, Algebraic groups and related topics, Adv. Stud. Pure Math., 6, ed. R. Hotta, Kinokuniya, Tokio, 1985, 481–513

[5] De Concini C., Procesi C., “Cohomology of compactifications of algebraic groups”, Duke Math. J., 53 (1986), 585–594 | DOI | MR | Zbl

[6] Strickland E. S., “A vanishing theorem for group compactifications”, Math. Ann., 277 (1987), 165–171 | DOI | MR | Zbl

[7] Bifet E., de Concini C., Procesi C., “Cohomology of regular embeddings”, Adv. Math., 82:1 (1990), 1–34 | DOI | MR | Zbl

[8] Littelmann P., Procesi C., “Equivariant cohomology of wonderful compactifications”, Operator algebras, unitary representations, enveloping algebras, and invariant theory, Progr. Math., 92, Birkhäuser, Boston, 1990, 219–262 | MR

[9] Strickland E. S., “Computing the equivariant cohomology of group compactifications”, Math. Ann., 291:2 (1991), 275–280 | DOI | MR | Zbl

[10] Brion M., “The behaviour at infinity of the Bruhat decomposition”, Comment. Math. Helv., 73 (1998), 137–174 | DOI | MR | Zbl

[11] Brion M., Polo P., “Large Schubert varieties”, Represent. Theory, 4 (2000), 97–126 | DOI | MR | Zbl

[12] Luna D., Vust Th., “Plongements d'espaces homogènes”, Comment. Math. Helv., 58 (1983), 186–245 | DOI | MR | Zbl

[13] Knop F., “The Luna–Vust theory of spherical embeddings”, Proc. of the Hyderabad conference on algebraic groups, ed. S. Ramanan, Manoj Prakashan, Madras, 1991, 225–249 | MR | Zbl

[14] Brion M., “Variétés sphériques”, Notes de la session de la S. M. F. “Opérations hamiltoniennes et opérations de groupes algébriques”, Grenoble, 1997; http://www-fourier.ujf-grenoble.fr/m̃brion/spheriques.ps

[15] Putcha M. S., Linear algebraic monoids, Cambridge Univ. Press, Cambridge, 1988 | MR | Zbl

[16] Renner L. E., “Classification of semisimple algebraic monoids”, Trans. Amer. Math. Soc., 292 (1985), 93–223 | DOI | MR

[17] Putcha M. S., Renner L. E., “The system of idempotents and the lattice of $\mathscr J$-classes of reductive algebraic monoids”, J. Algebra, 116 (1988), 385–399 | DOI | MR | Zbl

[18] Putcha M. S., “Monoids on groups with BN-pairs”, J. Algebra, 120 (1989), 139–169 | DOI | MR | Zbl

[19] Renner L. E., “Classification of semisimple varieties”, J. Algebra, 122 (1989), 275–287 | DOI | MR | Zbl

[20] Vinberg E. B., “On reductive algebraic semigroups”, Lie groups and Lie algebras, E. B. Dynkin's seminar, Amer. Math. Soc. Transl. Ser. 2, 169, eds. S. Gindikin, E. Vinberg, Amer. Math. Soc., Providence, RI, 1995, 145–182 | MR | Zbl

[21] Rittatore A., “Algebraic monoids and group embeddings”, Transform. Groups, 3 (1998), 375–396 | DOI | MR | Zbl

[22] Popov V. L., “Styagivaniya deistvii reduktivnykh algebraicheskikh grupp”, Matem. sb., 130 (172):3 (1986), 310–334 | MR | Zbl

[23] Brion M., Inamdar S. P., “Frobenius splitting of spherical varieties”, Algebraic groups and their generalizations: Classical methods, Part I, Proc. Sympos. Pure Math., 56, eds. W. J. Haboush, B. J. Parshall, Amer. Math. Soc., Providence, RI, 1994, 207–218 | MR | Zbl

[24] Brion M., “Groupe de Picard et nombres charactéristiques des variétés sphériques”, Duke Math. J., 58:2 (1989), 397–424 | DOI | MR | Zbl

[25] Brion M., Luna D., Vust Th., “Espaces homogènes sphériques”, Invent. Math., 84 (1986), 617–632 | DOI | MR | Zbl

[26] Luna D., “Slices étales”, Mém. Soc. Math. Fr. (N.S.), 33 (1973), 81–105 | MR | Zbl

[27] Kraft Kh., Geometricheskie metody v teorii invariantov, Mir, M., 1987 | MR | Zbl

[28] Vust Th., “Plongements d'espaces symétriques algébriques: une classification”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 17:2 (1990), 165–194 | MR

[29] Brion M., “Sur la géométrie des variétés sphériques”, Comment. Math. Helv., 66 (1991), 237–262 | DOI | MR | Zbl

[30] Vinberg E. B., Onischik A. L., Seminar po gruppam Li i algebraicheskim gruppam, Nauka, M., 1988 | MR