Transformation of measures in infinite-dimensional spaces by the~flow induced by a~stochastic differential equation
Sbornik. Mathematics, Tome 194 (2003) no. 4, pp. 551-573
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mu$ be a Gaussian measure in the space $X$ and $H$ the Cameron–Martin space of the measure $\mu$. Consider the stochastic differential equation
\begin{gather*}
d\xi(u,t)=a_t(\xi(u,t))\,dt+\sum_n\sigma^n_t(\xi(u,t))\,d\omega_n(t),
\quad t\in[0,T],
\\
\xi(u,0)=u,
\end{gather*}
where $u\in X$, $a$ and $\sigma_n$ are functions taking values in $H$, $\omega_n(t)$, $n\geqslant 1$ are independent one-dimensional Wiener processes. Consider the measure-valued random process $\mu_t:=\mu\circ\xi(\,\cdot\,,t)^{-1}$.
It is shown that under certain natural conditions on the coefficients
of the initial equation the measures $\mu_t(\omega)$ are equivalent to $\mu$
for almost all $\omega$. Explicit expressions for their Radon–Nikodym densities are obtained.
@article{SM_2003_194_4_a4,
author = {A. Yu. Pilipenko},
title = {Transformation of measures in infinite-dimensional spaces by the~flow induced by a~stochastic differential equation},
journal = {Sbornik. Mathematics},
pages = {551--573},
publisher = {mathdoc},
volume = {194},
number = {4},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2003_194_4_a4/}
}
TY - JOUR AU - A. Yu. Pilipenko TI - Transformation of measures in infinite-dimensional spaces by the~flow induced by a~stochastic differential equation JO - Sbornik. Mathematics PY - 2003 SP - 551 EP - 573 VL - 194 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2003_194_4_a4/ LA - en ID - SM_2003_194_4_a4 ER -
%0 Journal Article %A A. Yu. Pilipenko %T Transformation of measures in infinite-dimensional spaces by the~flow induced by a~stochastic differential equation %J Sbornik. Mathematics %D 2003 %P 551-573 %V 194 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2003_194_4_a4/ %G en %F SM_2003_194_4_a4
A. Yu. Pilipenko. Transformation of measures in infinite-dimensional spaces by the~flow induced by a~stochastic differential equation. Sbornik. Mathematics, Tome 194 (2003) no. 4, pp. 551-573. http://geodesic.mathdoc.fr/item/SM_2003_194_4_a4/