Transformation of measures in infinite-dimensional spaces by the flow induced by a stochastic differential equation
Sbornik. Mathematics, Tome 194 (2003) no. 4, pp. 551-573 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mu$ be a Gaussian measure in the space $X$ and $H$ the Cameron–Martin space of the measure $\mu$. Consider the stochastic differential equation \begin{gather*} d\xi(u,t)=a_t(\xi(u,t))\,dt+\sum_n\sigma^n_t(\xi(u,t))\,d\omega_n(t), \quad t\in[0,T], \\ \xi(u,0)=u, \end{gather*} where $u\in X$, $a$ and $\sigma_n$ are functions taking values in $H$, $\omega_n(t)$, $n\geqslant 1$ are independent one-dimensional Wiener processes. Consider the measure-valued random process $\mu_t:=\mu\circ\xi(\,\cdot\,,t)^{-1}$. It is shown that under certain natural conditions on the coefficients of the initial equation the measures $\mu_t(\omega)$ are equivalent to $\mu$ for almost all $\omega$. Explicit expressions for their Radon–Nikodym densities are obtained.
@article{SM_2003_194_4_a4,
     author = {A. Yu. Pilipenko},
     title = {Transformation of measures in infinite-dimensional spaces by the~flow induced by a~stochastic differential equation},
     journal = {Sbornik. Mathematics},
     pages = {551--573},
     year = {2003},
     volume = {194},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_4_a4/}
}
TY  - JOUR
AU  - A. Yu. Pilipenko
TI  - Transformation of measures in infinite-dimensional spaces by the flow induced by a stochastic differential equation
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 551
EP  - 573
VL  - 194
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_4_a4/
LA  - en
ID  - SM_2003_194_4_a4
ER  - 
%0 Journal Article
%A A. Yu. Pilipenko
%T Transformation of measures in infinite-dimensional spaces by the flow induced by a stochastic differential equation
%J Sbornik. Mathematics
%D 2003
%P 551-573
%V 194
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2003_194_4_a4/
%G en
%F SM_2003_194_4_a4
A. Yu. Pilipenko. Transformation of measures in infinite-dimensional spaces by the flow induced by a stochastic differential equation. Sbornik. Mathematics, Tome 194 (2003) no. 4, pp. 551-573. http://geodesic.mathdoc.fr/item/SM_2003_194_4_a4/

[1] Kunita H., Stochastic flows and stochastic differential equations, Cambridge Stud. Adv. Math., 24, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[2] Skorokhod A. V., Sluchainye lineinye operatory, Naukova dumka, Kiev, 1978 | MR

[3] Cruzeiro A.-B., “Equations différentielles sur l'espace de Wiener et formules de Cameron–Martin non-linéaires”, J. Funct. Anal., 54 (1983), 206–227 | DOI | MR | Zbl

[4] Bogachev V. I., Mayer-Wolf E., “Absolutely continuous flows generated by Sobolev class vector fields in finite and infinite dimensions”, J. Funct. Anal., 167 (1999), 1–68 | DOI | MR | Zbl

[5] Ustunel A. S., Zakai M., “Transformations of Wiener measure under anticipative flows”, Probab. Theory Related Fields., 93 (1992), 91–136 | DOI | MR

[6] Kulik A. M., Pilipenko A. Yu., “Nelineinye preobrazovaniya gladkikh mer v beskonechnomernom prostranstve”, Ukr. matem. zhurn., 52:9 (2000), 1403–1431 | MR | Zbl

[7] Watanabe S., Lectures on stochastic differential equations and the Malliavin calculus, Springer-Verlag, Berlin, 1984 | MR

[8] Bogachev V. I., Gaussovskie mery, Nauka, M., 1997 | MR

[9] Gikhman I. I., Skorokhod A. V., “O plotnostyakh veroyatnostnykh mer v funktsionalnykh prostranstvakh”, UMN, 21:6 (1966), 83–152 | MR | Zbl

[10] Stricker C., Yor M., “Calcul stochastique dependant d'un paramètre”, Z. Wahrsch. Verw. Gebiete, 45:2 (1978), 109–133 | DOI | MR | Zbl