Smirnov--Sobolev spaces and their embeddings
Sbornik. Mathematics, Tome 194 (2003) no. 4, pp. 541-550
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a bounded simply connected domain with
rectifiable boundary $\partial G$ and assume that $0$.
Let $E_p(G)$ be the Smirnov space of analytic functions $f$ in $G$.
The Smirnov–Sobolev space $E_p^s(G)$, $s\in\mathbb N$,
consists of analytic functions $f$ in $G$ such that $f^{(s)}\in E_p(G)$.
If $G$ is a disc, then $E_p(G)$ is the Hardy space and $E_p^s(G)$
is the Hardy–Sobolev space. In that case the following Hardy–Littlewood embedding
is known:
$$
E_\sigma^s(G)\subset E_p(G), \qquad 1/\sigma=s+1/p.
$$ The author has recently extended this embedding to Smirnov–Sobolev
spaces in Lavrent'ev domains. A further generalization of the Hardy–Littlewood
embedding is obtained in the present paper. Namely, it is shown that such an embedding holds if the domain $G$ satisfies the following condition: for all points $\xi$ and $\eta$ in $\partial G$,
$$
|\Gamma(\xi,\eta)|\leqslant \chi\rho^+(\xi,\eta), \qquad \chi=\chi(G)\geqslant 1.
$$ Here $|\Gamma(\xi,\eta)|$
is the length of the smallest of the two arcs of $\partial G$ connecting $\xi$
and $\eta$; $\rho^+(\xi,\eta)$ is the interior distance (with respect to $G$) between the points
$\xi$ and $\eta$.
@article{SM_2003_194_4_a3,
author = {A. A. Pekarskii},
title = {Smirnov--Sobolev spaces and their embeddings},
journal = {Sbornik. Mathematics},
pages = {541--550},
publisher = {mathdoc},
volume = {194},
number = {4},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2003_194_4_a3/}
}
A. A. Pekarskii. Smirnov--Sobolev spaces and their embeddings. Sbornik. Mathematics, Tome 194 (2003) no. 4, pp. 541-550. http://geodesic.mathdoc.fr/item/SM_2003_194_4_a3/