Smirnov--Sobolev spaces and their embeddings
Sbornik. Mathematics, Tome 194 (2003) no. 4, pp. 541-550

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a bounded simply connected domain with rectifiable boundary $\partial G$ and assume that $0$. Let $E_p(G)$ be the Smirnov space of analytic functions $f$ in $G$. The Smirnov–Sobolev space $E_p^s(G)$, $s\in\mathbb N$, consists of analytic functions $f$ in $G$ such that $f^{(s)}\in E_p(G)$. If $G$ is a disc, then $E_p(G)$ is the Hardy space and $E_p^s(G)$ is the Hardy–Sobolev space. In that case the following Hardy–Littlewood embedding is known: $$ E_\sigma^s(G)\subset E_p(G), \qquad 1/\sigma=s+1/p. $$ The author has recently extended this embedding to Smirnov–Sobolev spaces in Lavrent'ev domains. A further generalization of the Hardy–Littlewood embedding is obtained in the present paper. Namely, it is shown that such an embedding holds if the domain $G$ satisfies the following condition: for all points $\xi$ and $\eta$ in $\partial G$, $$ |\Gamma(\xi,\eta)|\leqslant \chi\rho^+(\xi,\eta), \qquad \chi=\chi(G)\geqslant 1. $$ Here $|\Gamma(\xi,\eta)|$ is the length of the smallest of the two arcs of $\partial G$ connecting $\xi$ and $\eta$; $\rho^+(\xi,\eta)$ is the interior distance (with respect to $G$) between the points $\xi$ and $\eta$.
@article{SM_2003_194_4_a3,
     author = {A. A. Pekarskii},
     title = {Smirnov--Sobolev spaces and their embeddings},
     journal = {Sbornik. Mathematics},
     pages = {541--550},
     publisher = {mathdoc},
     volume = {194},
     number = {4},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_4_a3/}
}
TY  - JOUR
AU  - A. A. Pekarskii
TI  - Smirnov--Sobolev spaces and their embeddings
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 541
EP  - 550
VL  - 194
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_4_a3/
LA  - en
ID  - SM_2003_194_4_a3
ER  - 
%0 Journal Article
%A A. A. Pekarskii
%T Smirnov--Sobolev spaces and their embeddings
%J Sbornik. Mathematics
%D 2003
%P 541-550
%V 194
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2003_194_4_a3/
%G en
%F SM_2003_194_4_a3
A. A. Pekarskii. Smirnov--Sobolev spaces and their embeddings. Sbornik. Mathematics, Tome 194 (2003) no. 4, pp. 541-550. http://geodesic.mathdoc.fr/item/SM_2003_194_4_a3/