Rayleigh triangles and non-matrix interpolation of matrix beta integrals
Sbornik. Mathematics, Tome 194 (2003) no. 4, pp. 515-540 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Rayleigh triangle of size $n$ is a set of $n(n+1)/2$ real numbers $\lambda_{kl}$, where $1\leqslant l\leqslant k\leqslant n$, which are decreasing as $k$ increases for fixed $k$ and are increasing as $k$ increases for fixed $k-l$. We construct a family of beta integrals over the space of Rayleigh triangles which interpolate matrix integrals of the types of Siegel, Hua Loo Keng, and Gindikin with respect to the dimension of the ground field ($\mathbb R$, $\mathbb C$, or the quaternions $\mathbb H$). We also interpolate the Hua–Pickrell measures on the inverse limits of the symmetric spaces $\operatorname U(n)$, $\operatorname U(n)/\operatorname O(n)$, $\operatorname U(2n)/\operatorname{Sp}(n)$. Our family of integrals also includes the Selberg integral.
@article{SM_2003_194_4_a2,
     author = {Yu. A. Neretin},
     title = {Rayleigh triangles and non-matrix interpolation of matrix beta integrals},
     journal = {Sbornik. Mathematics},
     pages = {515--540},
     year = {2003},
     volume = {194},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_4_a2/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - Rayleigh triangles and non-matrix interpolation of matrix beta integrals
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 515
EP  - 540
VL  - 194
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_4_a2/
LA  - en
ID  - SM_2003_194_4_a2
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T Rayleigh triangles and non-matrix interpolation of matrix beta integrals
%J Sbornik. Mathematics
%D 2003
%P 515-540
%V 194
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2003_194_4_a2/
%G en
%F SM_2003_194_4_a2
Yu. A. Neretin. Rayleigh triangles and non-matrix interpolation of matrix beta integrals. Sbornik. Mathematics, Tome 194 (2003) no. 4, pp. 515-540. http://geodesic.mathdoc.fr/item/SM_2003_194_4_a2/

[1] Hankel H., “Bestimmte Integrale mit Cylinder Functionen”, Math. Ann., 8 (1876), 453–470 | DOI

[2] Vatson G., Teoriya besselevykh funktsii, IL, M., 1949

[3] Olevskii M. N., “O predstavlenii proizvolnoi funktsii cherez integral s yadrom, vklyuchayuschim gipergeometricheskuyu funktsiyu”, Dokl. AN SSSR, 69:1 (1949), 11–14 | MR | Zbl

[4] Koornwinder T. H., “Jacobi functions and analysis on noncompact semisimple Lie groups”, Special functions: group theoretical aspects and applications, eds. R. Askey et al., D. Reidel Publ. Co., Dordrecht, 1984, 1–85 | MR | Zbl

[5] Neretin Yu. A., “Indeksnoe gipergeometricheskoe preobrazovanie i imitatsiya analiza yader Berezina na giperbolicheskikh prostranstvakh”, Matem. sb., 192:3 (2001), 83–114 | MR | Zbl

[6] Heckman G. J., Opdam E. M., “Root systems and hypergeometric functions. I”, Compositio Math., 64 (1987), 329–352 | MR | Zbl

[7] Heckman G. J., Schlichtkrull H., Harmonic analysis and special functions on symmetric spaces, Academic Press, Orlando, FL, 1994 | MR | Zbl

[8] MacDonald I. G., Symmetric functions and Hall polynomials, Clarendon Press, Oxford, 1998 | MR | Zbl

[9] Cherednik I., “Inverse Harish-Chandra transform and difference operators”, Internat. Math. Res. Notices, 15 (1997), 733–750 | DOI | MR | Zbl

[10] Cherednik I., Ostrik V., From double affine Hecke algebra to Fourier transform, Preprint, http://arXiv.org/abs/math/0111130

[11] Pickrell D., “Measures on infinite-dimensional Grassmann manifold”, J. Funct. Anal., 70 (1987), 323–356 | DOI | MR | Zbl

[12] Neretin Yu. A., “Hua-type integrals over unitary groups and over projective limits of unitary groups”, Duke Math. J., 114:2 (2002), 239–266 ; http://arXiv.org/abs/math/0010014 | DOI | MR | Zbl

[13] Borodin A., Olshanski G., “Infinite random matrices and ergodic measures”, Comm. Math. Phys., 223 (2001), 87–123 | DOI | MR | Zbl

[14] Olshanski G., “Gelfand–Tsetlin schemes and measures of hypergeometric type” (to appear)

[15] Gindikin S. G., “Analiz na odnorodnykh prostranstvakh”, UMN, 19:4 (1964), 3–92 | MR | Zbl

[16] Neretin Yu. A., “Matrichnye analogi $B$-funktsii i formula Plansherelya dlya kern-predstavlenii Berezina”, Matem. sb., 191:5 (2000), 67–100 | MR | Zbl

[17] Bhatia R., Matrix analysis, Springer-Verlag, New York, 1996 | MR

[18] Gantmakher F. R., Lektsii po analiticheskoi mekhanike, Nauka, M., 1966

[19] Gelfand I. M., Naimark M. A., Unitarnye predstavleniya klassicheskikh grupp, Trudy MIAN, 36, 1950 | MR | Zbl

[20] Okounkov A., Olshanski G., “Shifted Jack polynomials, binomial formula, and applications”, Math. Res. Lett., 4 (1997), 69–78 | MR | Zbl

[21] Kazarnovski-Krol A., “Cycles for asymptotic solutions and the Weyl group”, The Gelfand mathematical seminars, 1993–1995, Birkhäuser, Boston, 1996, 123–150 | MR | Zbl

[22] Ingham A. E., “An integral which occurs in statistics”, Proc. Cambridge Philos. Soc., 29 (1933), 271–276 | DOI | Zbl

[23] Siegel C. L., “Über die analytische Theorie der quadratischen Formen”, Ann. of Math. (2), 36 (1935), 527–606 | DOI | MR | Zbl

[24] Khua Lo Ken, Garmonicheskii analiz funktsii neskolkikh kompleksnykh peremennykh v klassicheskikh oblastyakh, IL, M., 1959

[25] Faraut J., Koranyi A., Analysis on symmetric cones, Clarendon Press, Oxford, 1994 | MR | Zbl

[26] Neretin Yu. A., “O razdelenii spektrov v analize yader Berezina”, Funkts. analiz i ego prilozh., 34:3 (2000), 49–62 | MR | Zbl

[27] Selberg A., “Bemerkninger om et multipelt integral”, Norske Mat. Tiddsskr., 26 (1944), 71–78 | MR

[28] Anderson G. W., “A short proof of Selberg's generalized beta-formula”, Forum Math., 3:4 (1991), 415–417 | MR | Zbl

[29] Andrews G. R., Askey R., Roy R., Special functions, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[30] Kazarnovski-Krol A., “Matrix elements of vertex operators of the deformed $WA_n$ algebras and the Harish-Chandra solutions to Macdonald's difference equations”, Selecta Math. (N.S.), 5:2 (1999), 257–301 | DOI | MR | Zbl