Isoperimetric inequality on conformally
Sbornik. Mathematics, Tome 194 (2003) no. 4, pp. 495-513 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that on an arbitrary non-compact Riemannian manifold of conformally hyperbolic type the isoperimetric inequality can be taken by a conformal change of the metric to the same canonical linear form as in the case of the standard hyperbolic Lobachevskii space. Both the absolute isoperimetric inequality and the relative one (for manifolds with boundary) are obtained. This work develops the results and methods of a joint paper with Zorich, in which the absolute isoperimetric inequality was obtained under a certain additional condition; the resulting statements are definitive in a certain sense.
@article{SM_2003_194_4_a1,
     author = {V. M. Kesel'man},
     title = {Isoperimetric inequality on conformally},
     journal = {Sbornik. Mathematics},
     pages = {495--513},
     year = {2003},
     volume = {194},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_4_a1/}
}
TY  - JOUR
AU  - V. M. Kesel'man
TI  - Isoperimetric inequality on conformally
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 495
EP  - 513
VL  - 194
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_4_a1/
LA  - en
ID  - SM_2003_194_4_a1
ER  - 
%0 Journal Article
%A V. M. Kesel'man
%T Isoperimetric inequality on conformally
%J Sbornik. Mathematics
%D 2003
%P 495-513
%V 194
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2003_194_4_a1/
%G en
%F SM_2003_194_4_a1
V. M. Kesel'man. Isoperimetric inequality on conformally. Sbornik. Mathematics, Tome 194 (2003) no. 4, pp. 495-513. http://geodesic.mathdoc.fr/item/SM_2003_194_4_a1/

[1] Zorich V. A., Keselman V. M., “Izoperimetricheskoe neravenstvo na mnogoobraziyakh konformno-giperbolicheskogo tipa”, Funkts. analiz i ego prilozh., 35:2 (2001), 12–23 | MR | Zbl

[2] Reshetnyak Yu. G., Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982 | MR

[3] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[4] Heinonen J., Kilpelainen T., Martio O., Nonlinear potential theory of degenerate elliptic equations, Oxford Univ. Press, Oxford, 1993 | MR | Zbl

[5] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR | Zbl

[6] Burago Yu. D., Zalgaller V. A., Geometricheskie neravenstva, Nauka, L., 1980 | MR | Zbl

[7] Grigoryan A. A., O svoistvakh garmonicheskikh funktsii na mnogoobraziyakh, Dis. ... kand. fiz.-matem. nauk, MGU, M., 1982

[8] Grigor'yan A., “Estimates of heat kernels on Riemannian manifolds”, London Math. Soc. Lecture Note Ser., 273, 1999, 140–225 | MR | Zbl