Representation of moduli spaces of curves and calculation of extremal polynomials
Sbornik. Mathematics, Tome 194 (2003) no. 4, pp. 469-494 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The classical Chebyshev and Zolotarev polynomials are the first ranks of the hierarchy of extremal polynomials, which are typical solutions of problems on the conditional minimization of the uniform norm over a space of polynomials. In the general case such polynomials are connected with hyperelliptic curves the genus of which labels the ranks of the hierarchy. Representations of the moduli spaces of such curves are considered in this paper with applications to the calculation of extremal polynomials. Uniformizing curves by special Schottky groups one obtains effectively computable parametric expressions for extremal polynomials in terms of linear series of Poincare.
@article{SM_2003_194_4_a0,
     author = {A. B. Bogatyrev},
     title = {Representation of moduli spaces of curves and calculation of extremal polynomials},
     journal = {Sbornik. Mathematics},
     pages = {469--494},
     year = {2003},
     volume = {194},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_4_a0/}
}
TY  - JOUR
AU  - A. B. Bogatyrev
TI  - Representation of moduli spaces of curves and calculation of extremal polynomials
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 469
EP  - 494
VL  - 194
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_4_a0/
LA  - en
ID  - SM_2003_194_4_a0
ER  - 
%0 Journal Article
%A A. B. Bogatyrev
%T Representation of moduli spaces of curves and calculation of extremal polynomials
%J Sbornik. Mathematics
%D 2003
%P 469-494
%V 194
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2003_194_4_a0/
%G en
%F SM_2003_194_4_a0
A. B. Bogatyrev. Representation of moduli spaces of curves and calculation of extremal polynomials. Sbornik. Mathematics, Tome 194 (2003) no. 4, pp. 469-494. http://geodesic.mathdoc.fr/item/SM_2003_194_4_a0/

[1] Bogatyrëv A. B., “Effektivnyi podkhod k zadacham o naimenshem uklonenii”, Matem. sb., 193:12 (2002), 21–40 | MR | Zbl

[2] Zolotarëv E. I., “Prilozheniya ellipticheskikh funktsii k voprosam o funktsiyakh, naimenee i naibolee uklonyayuschikhsya ot nulya”, Polnoe sobranie sochinenii, t. 2, AN SSSR, M., 1934

[3] Bogatyrëv A. B., “Ekstremalnye mnogochleny na yazyke grafov” (to appear)

[4] Bogatyrëv A. B., “Ob effektivnom vychislenii mnogochlenov Chebyshëva dlya mnogikh otrezkov”, Matem. sb., 190:11 (1999), 15–50 | MR | Zbl

[5] Gardiner F. P., Teichmüller theory and quadratic differentials, John Wiley Sons, New York, 1987 | MR | Zbl

[6] Krushkal S. L., Apanasov B. N., Gusevskii N. A., Kleinovy gruppy i uniformizatsiya v primerakh i zadachakh, Nauka, Novosibirsk, 1981

[7] Schottky F., “Über eine specielle Function welche bei einer bestimmten linearen Transformation ungeändert bleibt”, J. Reine Angew. Math., 101 (1887), 227–272

[8] Ahlfors L. V., Lectures on quasiconformal mappings, Van Nostrand, Princeton, 1966 | MR | Zbl

[9] Alfors L., Bers L., Prostranstva rimanovykh poverkhnostei i kvazikonformnye otobrazheniya, IL, M, 1961

[10] Bobenko A. I., “Uniformizatsiya Shottki i konechnozonnoe integrirovanie”, Dokl. AN SSSR, 295 (1987), 268–272 ; Belokolos E. D., Bobenko A. I., Enol'skii V. Z., Its A. R., Matveev V. B., Algebro-geometric approach to nonlinear integrable equations, Springer-Verlag, Berlin, 1994 | Zbl | Zbl

[11] Burnside W., “On a class of authomorphic functions”, Proc. London Math. Soc., 23 (1892), 49–88 | DOI

[12] Farkas H., Kra I., Riemann surfaces, Springer-Verlag, New York, 1992 | MR | Zbl