@article{SM_2003_194_4_a0,
author = {A. B. Bogatyrev},
title = {Representation of moduli spaces of curves and calculation of extremal polynomials},
journal = {Sbornik. Mathematics},
pages = {469--494},
year = {2003},
volume = {194},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2003_194_4_a0/}
}
A. B. Bogatyrev. Representation of moduli spaces of curves and calculation of extremal polynomials. Sbornik. Mathematics, Tome 194 (2003) no. 4, pp. 469-494. http://geodesic.mathdoc.fr/item/SM_2003_194_4_a0/
[1] Bogatyrëv A. B., “Effektivnyi podkhod k zadacham o naimenshem uklonenii”, Matem. sb., 193:12 (2002), 21–40 | MR | Zbl
[2] Zolotarëv E. I., “Prilozheniya ellipticheskikh funktsii k voprosam o funktsiyakh, naimenee i naibolee uklonyayuschikhsya ot nulya”, Polnoe sobranie sochinenii, t. 2, AN SSSR, M., 1934
[3] Bogatyrëv A. B., “Ekstremalnye mnogochleny na yazyke grafov” (to appear)
[4] Bogatyrëv A. B., “Ob effektivnom vychislenii mnogochlenov Chebyshëva dlya mnogikh otrezkov”, Matem. sb., 190:11 (1999), 15–50 | MR | Zbl
[5] Gardiner F. P., Teichmüller theory and quadratic differentials, John Wiley Sons, New York, 1987 | MR | Zbl
[6] Krushkal S. L., Apanasov B. N., Gusevskii N. A., Kleinovy gruppy i uniformizatsiya v primerakh i zadachakh, Nauka, Novosibirsk, 1981
[7] Schottky F., “Über eine specielle Function welche bei einer bestimmten linearen Transformation ungeändert bleibt”, J. Reine Angew. Math., 101 (1887), 227–272
[8] Ahlfors L. V., Lectures on quasiconformal mappings, Van Nostrand, Princeton, 1966 | MR | Zbl
[9] Alfors L., Bers L., Prostranstva rimanovykh poverkhnostei i kvazikonformnye otobrazheniya, IL, M, 1961
[10] Bobenko A. I., “Uniformizatsiya Shottki i konechnozonnoe integrirovanie”, Dokl. AN SSSR, 295 (1987), 268–272 ; Belokolos E. D., Bobenko A. I., Enol'skii V. Z., Its A. R., Matveev V. B., Algebro-geometric approach to nonlinear integrable equations, Springer-Verlag, Berlin, 1994 | Zbl | Zbl
[11] Burnside W., “On a class of authomorphic functions”, Proc. London Math. Soc., 23 (1892), 49–88 | DOI
[12] Farkas H., Kra I., Riemann surfaces, Springer-Verlag, New York, 1992 | MR | Zbl