@article{SM_2003_194_3_a6,
author = {V. V. Shchigolev},
title = {The finite basis property for some classes of~irreducible representations of symmetric groups},
journal = {Sbornik. Mathematics},
pages = {457--468},
year = {2003},
volume = {194},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2003_194_3_a6/}
}
V. V. Shchigolev. The finite basis property for some classes of irreducible representations of symmetric groups. Sbornik. Mathematics, Tome 194 (2003) no. 3, pp. 457-468. http://geodesic.mathdoc.fr/item/SM_2003_194_3_a6/
[1] Shchigolev V. V., “On the stabilization problem for submodules of Specht modules”, J. Algebra, 251:2 (2002), 790–812 | DOI | MR | Zbl
[2] Dzheims G., Teoriya predstavlenii simmetricheskoi gruppy, Mir, M., 1980
[3] Kleshchev A. S., “Branching rules for modular representations of symmetric groups. I”, J. Algebra, 178:2 (1995), 493–511 | DOI | MR | Zbl
[4] Kleshchev A. S., “Branching rules for modular representations of symmetric groups. II”, J. Reine Angew. Math., 459 (1995), 163–212 | MR | Zbl
[5] Mathieu O., “On the dimension of some modular irreducible representations of the symmetric group”, Lett. Math. Phys., 38:1 (1996), 23–32 | DOI | MR | Zbl
[6] Erdmann K., “Tensor products and dimensions of simple modules for symmetric groups”, Manuscripta Math., 88:3 (1995), 357–386 | DOI | MR | Zbl
[7] Donkin S., “On tilting modules for algebraic groups”, Math. Z., 212:1 (1993), 39–60 | DOI | MR | Zbl
[8] Ringel C. M., “The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences”, Math. Z., 208:2 (1991), 209–223 | DOI | MR
[9] Mathieu O., “Filtrations of $G$-modules”, Ann. Sci. École Norm. Sup. (4), 23:4 (1990), 625–644 | MR | Zbl
[10] De Concini C., Procesi C., “A characteristic free approach to invariant theory”, Adv. Math., 21:3 (1976), 330–354 | DOI | MR | Zbl
[11] Green J. A., Polynomial representations of $GL_n(K)$, Lecture Notes in Math., 830, Springer-Verlag, Berlin, 1980 | MR | Zbl