The finite basis property for some classes of irreducible representations of symmetric groups
Sbornik. Mathematics, Tome 194 (2003) no. 3, pp. 457-468 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The possibility of defining irreducible representations of symmetric groups by means of finitely many relations is studied. The existence of finite bases is established for the classes of representations corresponding to two-part partitions and to partitions in the fundamental alcove.
@article{SM_2003_194_3_a6,
     author = {V. V. Shchigolev},
     title = {The finite basis property for some classes of~irreducible representations of symmetric groups},
     journal = {Sbornik. Mathematics},
     pages = {457--468},
     year = {2003},
     volume = {194},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_3_a6/}
}
TY  - JOUR
AU  - V. V. Shchigolev
TI  - The finite basis property for some classes of irreducible representations of symmetric groups
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 457
EP  - 468
VL  - 194
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_3_a6/
LA  - en
ID  - SM_2003_194_3_a6
ER  - 
%0 Journal Article
%A V. V. Shchigolev
%T The finite basis property for some classes of irreducible representations of symmetric groups
%J Sbornik. Mathematics
%D 2003
%P 457-468
%V 194
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2003_194_3_a6/
%G en
%F SM_2003_194_3_a6
V. V. Shchigolev. The finite basis property for some classes of irreducible representations of symmetric groups. Sbornik. Mathematics, Tome 194 (2003) no. 3, pp. 457-468. http://geodesic.mathdoc.fr/item/SM_2003_194_3_a6/

[1] Shchigolev V. V., “On the stabilization problem for submodules of Specht modules”, J. Algebra, 251:2 (2002), 790–812 | DOI | MR | Zbl

[2] Dzheims G., Teoriya predstavlenii simmetricheskoi gruppy, Mir, M., 1980

[3] Kleshchev A. S., “Branching rules for modular representations of symmetric groups. I”, J. Algebra, 178:2 (1995), 493–511 | DOI | MR | Zbl

[4] Kleshchev A. S., “Branching rules for modular representations of symmetric groups. II”, J. Reine Angew. Math., 459 (1995), 163–212 | MR | Zbl

[5] Mathieu O., “On the dimension of some modular irreducible representations of the symmetric group”, Lett. Math. Phys., 38:1 (1996), 23–32 | DOI | MR | Zbl

[6] Erdmann K., “Tensor products and dimensions of simple modules for symmetric groups”, Manuscripta Math., 88:3 (1995), 357–386 | DOI | MR | Zbl

[7] Donkin S., “On tilting modules for algebraic groups”, Math. Z., 212:1 (1993), 39–60 | DOI | MR | Zbl

[8] Ringel C. M., “The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences”, Math. Z., 208:2 (1991), 209–223 | DOI | MR

[9] Mathieu O., “Filtrations of $G$-modules”, Ann. Sci. École Norm. Sup. (4), 23:4 (1990), 625–644 | MR | Zbl

[10] De Concini C., Procesi C., “A characteristic free approach to invariant theory”, Adv. Math., 21:3 (1976), 330–354 | DOI | MR | Zbl

[11] Green J. A., Polynomial representations of $GL_n(K)$, Lecture Notes in Math., 830, Springer-Verlag, Berlin, 1980 | MR | Zbl