Mixed series in ultraspherical polynomials and
Sbornik. Mathematics, Tome 194 (2003) no. 3, pp. 423-456

Voir la notice de l'article provenant de la source Math-Net.Ru

New (mixed) series in ultraspherical polynomials $P_n^{\alpha,\alpha}(x)$ are introduced. The basic difference between a mixed series in the polynomials $P_n^{\alpha,\alpha}(x)$ and a Fourier series in the same polynomials is as follows: a mixed series contains terms of the form $\dfrac{2^rf_{r,k}^\alpha}{(k+2\alpha)^{[r]}}P_{k+r}^{\alpha-r,\alpha-r}(x)$, where $1\leqslant r$ is an integer and $f_{r,k}^\alpha$ is the $k$ th Fourier coefficient of the derivative $f^{(r)}(x)$ with respect to the ultraspherical polynomials $P_k^{\alpha,\alpha}(x)$. It is shown that the partial sums ${\mathscr Y}_{n+2r}^\alpha(f,x)$ of a mixed series in the polynomial $P_k^{\alpha,\alpha}(x)$ contrast favourably with Fourier sums $S_n^\alpha(f,x)$ in the same polynomials as regards their approximation properties in classes of differentiable and analytic functions, and also in classes of functions of variable smoothness. In particular, the ${\mathscr Y}_{n+2r}^\alpha(f,x)$ can be used for the simultaneous approximation of a function $f(x)$ and its derivatives of orders up to $(r- 1)$, whereas the $S_n^\alpha(f,x)$ are not suitable for this purpose.
@article{SM_2003_194_3_a5,
     author = {I. I. Sharapudinov},
     title = {Mixed series in ultraspherical polynomials and},
     journal = {Sbornik. Mathematics},
     pages = {423--456},
     publisher = {mathdoc},
     volume = {194},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_3_a5/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - Mixed series in ultraspherical polynomials and
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 423
EP  - 456
VL  - 194
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_3_a5/
LA  - en
ID  - SM_2003_194_3_a5
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T Mixed series in ultraspherical polynomials and
%J Sbornik. Mathematics
%D 2003
%P 423-456
%V 194
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2003_194_3_a5/
%G en
%F SM_2003_194_3_a5
I. I. Sharapudinov. Mixed series in ultraspherical polynomials and. Sbornik. Mathematics, Tome 194 (2003) no. 3, pp. 423-456. http://geodesic.mathdoc.fr/item/SM_2003_194_3_a5/