Stabilization of the~solution of a~two-dimensional system of Navier--Stokes
Sbornik. Mathematics, Tome 194 (2003) no. 3, pp. 391-422

Voir la notice de l'article provenant de la source Math-Net.Ru

The behaviour as $t\to\infty$ of the solution of the mixed problem for the system of Navier–Stokes equations with a Dirichlet condition at the boundary is studied in an unbounded two-dimensional domain with several exits to infinity. A class of domains is distinguished in which an estimate characterizing the decay of solutions in terms of the geometry of the domain is proved for exponentially decreasing initial velocities. A similar estimate of the solution of the first mixed problem for the heat equation is sharp in a broad class of domains with several exits to infinity.
@article{SM_2003_194_3_a4,
     author = {N. A. Khisamutdinova},
     title = {Stabilization of the~solution of a~two-dimensional system of {Navier--Stokes}},
     journal = {Sbornik. Mathematics},
     pages = {391--422},
     publisher = {mathdoc},
     volume = {194},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_3_a4/}
}
TY  - JOUR
AU  - N. A. Khisamutdinova
TI  - Stabilization of the~solution of a~two-dimensional system of Navier--Stokes
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 391
EP  - 422
VL  - 194
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_3_a4/
LA  - en
ID  - SM_2003_194_3_a4
ER  - 
%0 Journal Article
%A N. A. Khisamutdinova
%T Stabilization of the~solution of a~two-dimensional system of Navier--Stokes
%J Sbornik. Mathematics
%D 2003
%P 391-422
%V 194
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2003_194_3_a4/
%G en
%F SM_2003_194_3_a4
N. A. Khisamutdinova. Stabilization of the~solution of a~two-dimensional system of Navier--Stokes. Sbornik. Mathematics, Tome 194 (2003) no. 3, pp. 391-422. http://geodesic.mathdoc.fr/item/SM_2003_194_3_a4/