Asymptotics of large deviations of
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 194 (2003) no. 3, pp. 369-390
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A general result is obtained on exact
asymptotics of the probabilities
$$
\mathsf P\biggl\{\int_0^1|\xi(t)|^p\,dt>u^p\biggr\}
$$
as $u\to\infty$ and $p>0$ for Gaussian  processes $\xi(t)$.
The general theorem is applied  for the calculation of these
asymptotics in the cases of the following processes: 
the Wiener process $w(t)$, the Brownian bridge, and the stationary
Gaussian process $\eta(t):=w(t+1)-w(t)$,
$t\in\mathbb R^1$.
The Laplace method in Banach spaces is used. The calculations of the constants reduce to solving an extremum problem  for the action functional and studying the spectrum of a differential operator of the second order of Sturm–Liouville type.
			
            
            
            
          
        
      @article{SM_2003_194_3_a3,
     author = {V. R. Fatalov},
     title = {Asymptotics of large deviations of},
     journal = {Sbornik. Mathematics},
     pages = {369--390},
     publisher = {mathdoc},
     volume = {194},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_3_a3/}
}
                      
                      
                    V. R. Fatalov. Asymptotics of large deviations of. Sbornik. Mathematics, Tome 194 (2003) no. 3, pp. 369-390. http://geodesic.mathdoc.fr/item/SM_2003_194_3_a3/
