Asymptotics of large deviations of
Sbornik. Mathematics, Tome 194 (2003) no. 3, pp. 369-390

Voir la notice de l'article provenant de la source Math-Net.Ru

A general result is obtained on exact asymptotics of the probabilities $$ \mathsf P\biggl\{\int_0^1|\xi(t)|^p\,dt>u^p\biggr\} $$ as $u\to\infty$ and $p>0$ for Gaussian processes $\xi(t)$. The general theorem is applied for the calculation of these asymptotics in the cases of the following processes: the Wiener process $w(t)$, the Brownian bridge, and the stationary Gaussian process $\eta(t):=w(t+1)-w(t)$, $t\in\mathbb R^1$. The Laplace method in Banach spaces is used. The calculations of the constants reduce to solving an extremum problem for the action functional and studying the spectrum of a differential operator of the second order of Sturm–Liouville type.
@article{SM_2003_194_3_a3,
     author = {V. R. Fatalov},
     title = {Asymptotics of large deviations of},
     journal = {Sbornik. Mathematics},
     pages = {369--390},
     publisher = {mathdoc},
     volume = {194},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_3_a3/}
}
TY  - JOUR
AU  - V. R. Fatalov
TI  - Asymptotics of large deviations of
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 369
EP  - 390
VL  - 194
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_3_a3/
LA  - en
ID  - SM_2003_194_3_a3
ER  - 
%0 Journal Article
%A V. R. Fatalov
%T Asymptotics of large deviations of
%J Sbornik. Mathematics
%D 2003
%P 369-390
%V 194
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2003_194_3_a3/
%G en
%F SM_2003_194_3_a3
V. R. Fatalov. Asymptotics of large deviations of. Sbornik. Mathematics, Tome 194 (2003) no. 3, pp. 369-390. http://geodesic.mathdoc.fr/item/SM_2003_194_3_a3/