Asymptotics of large deviations of
Sbornik. Mathematics, Tome 194 (2003) no. 3, pp. 369-390 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A general result is obtained on exact asymptotics of the probabilities $$ \mathsf P\biggl\{\int_0^1|\xi(t)|^p\,dt>u^p\biggr\} $$ as $u\to\infty$ and $p>0$ for Gaussian processes $\xi(t)$. The general theorem is applied for the calculation of these asymptotics in the cases of the following processes: the Wiener process $w(t)$, the Brownian bridge, and the stationary Gaussian process $\eta(t):=w(t+1)-w(t)$, $t\in\mathbb R^1$. The Laplace method in Banach spaces is used. The calculations of the constants reduce to solving an extremum problem for the action functional and studying the spectrum of a differential operator of the second order of Sturm–Liouville type.
@article{SM_2003_194_3_a3,
     author = {V. R. Fatalov},
     title = {Asymptotics of large deviations of},
     journal = {Sbornik. Mathematics},
     pages = {369--390},
     year = {2003},
     volume = {194},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_3_a3/}
}
TY  - JOUR
AU  - V. R. Fatalov
TI  - Asymptotics of large deviations of
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 369
EP  - 390
VL  - 194
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_3_a3/
LA  - en
ID  - SM_2003_194_3_a3
ER  - 
%0 Journal Article
%A V. R. Fatalov
%T Asymptotics of large deviations of
%J Sbornik. Mathematics
%D 2003
%P 369-390
%V 194
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2003_194_3_a3/
%G en
%F SM_2003_194_3_a3
V. R. Fatalov. Asymptotics of large deviations of. Sbornik. Mathematics, Tome 194 (2003) no. 3, pp. 369-390. http://geodesic.mathdoc.fr/item/SM_2003_194_3_a3/

[1] Piterbarg V. I., Fatalov V. R., “Metod Laplasa dlya veroyatnostnykh mer v banakhovykh prostranstvakh”, UMN, 50:6 (1995), 57–150 | MR | Zbl

[2] Fatalov V. R., “Bolshie ukloneniya gaussovskikh mer v prostranstvakh $l^p$ i $L^p$, $p\ge2$”, Teoriya veroyatnostei i ee prim., 41:3 (1996), 682–689 | MR | Zbl

[3] Fatalov V. R., “Bolshie ukloneniya $L^p$-normy vinerovskogo protsessa so snosom”, Matem. zametki, 65:3 (1999), 429–436 | MR | Zbl

[4] Fatalov V. R., “Asimptotiki bolshikh uklonenii vinerovskikh polei v $L^p$-norme, nelineinye uravneniya Khammershteina i giperbolicheskie kraevye zadachi vysokogo poryadka”, Teoriya veroyatnostei i ee prim., 47:4 (2002), 710–726 | MR

[5] Fatalov V. R., “Tochnye asimptotiki bolshikh uklonenii dlya gaussovskikh mer v gilbertovom prostranstve”, Izv. NAN RA. Matem., 27:5 (1992), 43–57 | MR

[6] Shepp L. A., “First passage time for a particular Gaussian process”, Ann. Math. Statist., 42:3 (1971), 946–951 | DOI | MR | Zbl

[7] Zakai M., Ziv J., “On the threshold effect in radar range estimation”, IEEE Trans. Inform. Theory, IT–15 (1969), 167–170 | DOI | MR

[8] Lidbetter M., Lindgren G., Rotsen Kh., Ekstremumy sluchainykh posledovatelnostei i protsessov, Mir, M., 1989 | MR

[9] Fatalov V. R., “Asimptotiki veroyatnostei malykh uklonenii v $L^2$-norme dlya dvukh klassov gaussovskikh statsionarnykh protsessov”, Teoriya veroyatnostei i ee prim. (to appear)

[10] Gobson E. V., Teoriya sfericheskikh i ellipsoidalnykh funktsii, IL, M., 1952

[11] Takács L., “On the distribution of the integral of the absolute value of the Brownian motion”, Ann. Appl. Probab., 3 (1993), 186–197 | DOI | MR | Zbl

[12] Tolmatz L., “Asymptotics of the distribution of the integral of the absolute value of the Brownian bridge for large arguments”, Ann. Probab., 28:1 (2000), 132–139 | DOI | MR | Zbl

[13] Podkorytova O. A., “On tail asymptotics for $L^1$-norm of centered Brownian bridge”, Matematiche (Catania), 53:1 (1998), 3–9 | MR | Zbl

[14] Rice S. O., “The integral of the absolute value of the pinned Wiener process – calculation of its probability density by numerical integration”, Ann. Probab., 10:1 (1982), 240–243 | DOI | MR | Zbl

[15] Aki S., Kashiwagi N., “Asymptotic properties of some goodness-of-fit tests based on the $L^1$-norm”, Ann. Inst. Statist. Math., 41:4 (1989), 753–764 | DOI | MR | Zbl

[16] Abramovits M., Stigan I. (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR

[17] Beitmen G., A.Erdeii A., Vysshie transtsendentnye funktsii, t. 1, Nauka, M., 1973

[18] Robin L., Fonctions sphériques de Legendre et fonctions sphéroidales, vols. 1–3, Gauthier–Villars, Paris, 1957–1959 | Zbl

[19] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, t. 1, Nauka, M., 1966

[20] Fatalov V. R., “Konstanty v asimptotikakh veroyatnostei malykh uklonenii dlya gaussovskikh protsessov i polei”, UMN, 58:4 (2003), 89–134 | MR | Zbl

[21] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR

[22] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov, Nauka, M., 1972 | MR | Zbl

[23] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[24] Vakhaniya N. N., Tarieladze V. I., Chobanyan S. A., Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985 | MR | Zbl

[25] Go Kh.-S., Gaussovskie mery v banakhovykh prostranstvakh, Mir, M., 1979

[26] Lifshits M. A., Gaussovskie sluchainye funktsii, TViMS, Kiev, 1995 | Zbl

[27] Fatalov V. R., “Tochnye asimptotiki tipa Laplasa dlya umerennykh uklonenii summ nezavisimykh banakhovoznachnykh sluchainykh elementov”, Teoriya veroyatnostei i ee prim. (to appear)

[28] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981 | MR | Zbl

[29] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1965 | MR

[30] Olver F., Asimptotiki i spetsialnye funktsii, Nauka, M., 1990 | MR | Zbl