The variety of complete pairs of zero-dimensional subschemes of length 2~of a~smooth three-dimensional variety is singular
Sbornik. Mathematics, Tome 194 (2003) no. 3, pp. 361-368
Voir la notice de l'article provenant de la source Math-Net.Ru
Equations are obtained that are satisfied by the vectors of the tangent space to
the variety $X_{22}$ of complete pairs of zero-dimensional subschemes of length 2 of a smooth three-dimensional projective algebraic variety at the most special point of the variety $X_{22}$. It is proved that the system of equations obtained is complete and the variety $X_{22}$ is singular.
@article{SM_2003_194_3_a2,
author = {N. V. Timofeeva},
title = {The variety of complete pairs of zero-dimensional subschemes of length 2~of a~smooth three-dimensional variety is singular},
journal = {Sbornik. Mathematics},
pages = {361--368},
publisher = {mathdoc},
volume = {194},
number = {3},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2003_194_3_a2/}
}
TY - JOUR AU - N. V. Timofeeva TI - The variety of complete pairs of zero-dimensional subschemes of length 2~of a~smooth three-dimensional variety is singular JO - Sbornik. Mathematics PY - 2003 SP - 361 EP - 368 VL - 194 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2003_194_3_a2/ LA - en ID - SM_2003_194_3_a2 ER -
%0 Journal Article %A N. V. Timofeeva %T The variety of complete pairs of zero-dimensional subschemes of length 2~of a~smooth three-dimensional variety is singular %J Sbornik. Mathematics %D 2003 %P 361-368 %V 194 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2003_194_3_a2/ %G en %F SM_2003_194_3_a2
N. V. Timofeeva. The variety of complete pairs of zero-dimensional subschemes of length 2~of a~smooth three-dimensional variety is singular. Sbornik. Mathematics, Tome 194 (2003) no. 3, pp. 361-368. http://geodesic.mathdoc.fr/item/SM_2003_194_3_a2/