@article{SM_2003_194_3_a2,
author = {N. V. Timofeeva},
title = {The variety of complete pairs of zero-dimensional subschemes of length 2~of a~smooth three-dimensional variety is singular},
journal = {Sbornik. Mathematics},
pages = {361--368},
year = {2003},
volume = {194},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2003_194_3_a2/}
}
TY - JOUR AU - N. V. Timofeeva TI - The variety of complete pairs of zero-dimensional subschemes of length 2 of a smooth three-dimensional variety is singular JO - Sbornik. Mathematics PY - 2003 SP - 361 EP - 368 VL - 194 IS - 3 UR - http://geodesic.mathdoc.fr/item/SM_2003_194_3_a2/ LA - en ID - SM_2003_194_3_a2 ER -
N. V. Timofeeva. The variety of complete pairs of zero-dimensional subschemes of length 2 of a smooth three-dimensional variety is singular. Sbornik. Mathematics, Tome 194 (2003) no. 3, pp. 361-368. http://geodesic.mathdoc.fr/item/SM_2003_194_3_a2/
[1] Tikhomirov A. S., “Mnogoobrazie polnykh par nulmernykh podskhem algebraicheskoi poverkhnosti”, Izv. RAN. Ser. matem., 61:6 (1997), 153–180 | MR | Zbl
[2] Cheah J., The cohomology of smooth nested Hilbert schemes of points, Thesis, Univ. of Chicago, Chicago, 1994
[3] Timofeeva N. V., “Gladkost i eilerova kharakteristika mnogoobraziya polnykh par $X_{23}$ nulmernykh podskhem dliny 2 i 3 algebraicheskoi poverkhnosti”, Matem. zametki, 67:2 (2000), 276–287 | MR | Zbl
[4] Briançon J., “Description de $\operatorname{Hilb}^n\mathbf C\{x,y\}$”, Invent. Math., 41 (1977), 45–89 | DOI | MR | Zbl
[5] Fogarty J., “Algebraic families on an algebraic surface”, Amer. J. Math., 90 (1968), 511–521 | DOI | MR | Zbl
[6] Kleiman S., “The enumerative theory of singularities”, Real and complex singularities, Proc. Ninth Nordic Summer School/NAVF Sympos. Math. (Oslo, August 5–25, 1976), Sijthoff and Noodhoff, Alpen aan den Rijn, 1977, 297–396 | MR