Inscribed polygons and Heron polynomials
Sbornik. Mathematics, Tome 194 (2003) no. 3, pp. 311-331 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Heron's well-known formula expressing the area of a triangle in terms of the lengths of its sides is generalized in the following sense to polygons inscribed in a circle: it is proved that the area is an algebraic function of the lengths of the edges of the polygon. Similar results are proved for the diagonals and the radius of the circumscribed circle. The resulting algebraic equations are studied and elementary geometric applications of the algebraic results obtained are presented.
@article{SM_2003_194_3_a0,
     author = {V. V. Varfolomeev},
     title = {Inscribed polygons and {Heron} polynomials},
     journal = {Sbornik. Mathematics},
     pages = {311--331},
     year = {2003},
     volume = {194},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_3_a0/}
}
TY  - JOUR
AU  - V. V. Varfolomeev
TI  - Inscribed polygons and Heron polynomials
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 311
EP  - 331
VL  - 194
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_3_a0/
LA  - en
ID  - SM_2003_194_3_a0
ER  - 
%0 Journal Article
%A V. V. Varfolomeev
%T Inscribed polygons and Heron polynomials
%J Sbornik. Mathematics
%D 2003
%P 311-331
%V 194
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2003_194_3_a0/
%G en
%F SM_2003_194_3_a0
V. V. Varfolomeev. Inscribed polygons and Heron polynomials. Sbornik. Mathematics, Tome 194 (2003) no. 3, pp. 311-331. http://geodesic.mathdoc.fr/item/SM_2003_194_3_a0/

[1] Sabitov I. Kh., “Obobschennaya formula Gerona–Tartalya i nekotorye ee sledstviya”, Matem. sb., 189:10 (1998), 105–134 | MR | Zbl