Inscribed polygons and Heron polynomials
Sbornik. Mathematics, Tome 194 (2003) no. 3, pp. 311-331

Voir la notice de l'article provenant de la source Math-Net.Ru

Heron's well-known formula expressing the area of a triangle in terms of the lengths of its sides is generalized in the following sense to polygons inscribed in a circle: it is proved that the area is an algebraic function of the lengths of the edges of the polygon. Similar results are proved for the diagonals and the radius of the circumscribed circle. The resulting algebraic equations are studied and elementary geometric applications of the algebraic results obtained are presented.
@article{SM_2003_194_3_a0,
     author = {V. V. Varfolomeev},
     title = {Inscribed polygons and  {Heron} polynomials},
     journal = {Sbornik. Mathematics},
     pages = {311--331},
     publisher = {mathdoc},
     volume = {194},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_3_a0/}
}
TY  - JOUR
AU  - V. V. Varfolomeev
TI  - Inscribed polygons and  Heron polynomials
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 311
EP  - 331
VL  - 194
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_3_a0/
LA  - en
ID  - SM_2003_194_3_a0
ER  - 
%0 Journal Article
%A V. V. Varfolomeev
%T Inscribed polygons and  Heron polynomials
%J Sbornik. Mathematics
%D 2003
%P 311-331
%V 194
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2003_194_3_a0/
%G en
%F SM_2003_194_3_a0
V. V. Varfolomeev. Inscribed polygons and  Heron polynomials. Sbornik. Mathematics, Tome 194 (2003) no. 3, pp. 311-331. http://geodesic.mathdoc.fr/item/SM_2003_194_3_a0/