Inhomogeneous Diophantine approximation and angular recurrence for
Sbornik. Mathematics, Tome 194 (2003) no. 2, pp. 295-309

Voir la notice de l'article provenant de la source Math-Net.Ru

For a fixed rotation number we compute the Hausdorff dimension of the set of well approximable numbers. We use this result and an inhomogeneous version of Jarnik's theorem to demonstrate strong recurrence properties of the billiard flow in certain polygons.
@article{SM_2003_194_2_a6,
     author = {S. Troubetzkoy and J. Schmeling},
     title = {Inhomogeneous {Diophantine} approximation and angular recurrence for},
     journal = {Sbornik. Mathematics},
     pages = {295--309},
     publisher = {mathdoc},
     volume = {194},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_2_a6/}
}
TY  - JOUR
AU  - S. Troubetzkoy
AU  - J. Schmeling
TI  - Inhomogeneous Diophantine approximation and angular recurrence for
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 295
EP  - 309
VL  - 194
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_2_a6/
LA  - en
ID  - SM_2003_194_2_a6
ER  - 
%0 Journal Article
%A S. Troubetzkoy
%A J. Schmeling
%T Inhomogeneous Diophantine approximation and angular recurrence for
%J Sbornik. Mathematics
%D 2003
%P 295-309
%V 194
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2003_194_2_a6/
%G en
%F SM_2003_194_2_a6
S. Troubetzkoy; J. Schmeling. Inhomogeneous Diophantine approximation and angular recurrence for. Sbornik. Mathematics, Tome 194 (2003) no. 2, pp. 295-309. http://geodesic.mathdoc.fr/item/SM_2003_194_2_a6/