Inhomogeneous Diophantine approximation and angular recurrence for
Sbornik. Mathematics, Tome 194 (2003) no. 2, pp. 295-309 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a fixed rotation number we compute the Hausdorff dimension of the set of well approximable numbers. We use this result and an inhomogeneous version of Jarnik's theorem to demonstrate strong recurrence properties of the billiard flow in certain polygons.
@article{SM_2003_194_2_a6,
     author = {S. Troubetzkoy and J. Schmeling},
     title = {Inhomogeneous {Diophantine} approximation and angular recurrence for},
     journal = {Sbornik. Mathematics},
     pages = {295--309},
     year = {2003},
     volume = {194},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_2_a6/}
}
TY  - JOUR
AU  - S. Troubetzkoy
AU  - J. Schmeling
TI  - Inhomogeneous Diophantine approximation and angular recurrence for
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 295
EP  - 309
VL  - 194
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_2_a6/
LA  - en
ID  - SM_2003_194_2_a6
ER  - 
%0 Journal Article
%A S. Troubetzkoy
%A J. Schmeling
%T Inhomogeneous Diophantine approximation and angular recurrence for
%J Sbornik. Mathematics
%D 2003
%P 295-309
%V 194
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2003_194_2_a6/
%G en
%F SM_2003_194_2_a6
S. Troubetzkoy; J. Schmeling. Inhomogeneous Diophantine approximation and angular recurrence for. Sbornik. Mathematics, Tome 194 (2003) no. 2, pp. 295-309. http://geodesic.mathdoc.fr/item/SM_2003_194_2_a6/

[1] Ruijgrok Th., “Periodic orbits in triangular billiards”, Acta Phys. Polon. B, 22 (1991), 955–981

[2] Boshernitzan M., “Billiards and rational periodic directions in polygons”, Amer. Math. Monthly, 99 (1992), 522–529 | DOI | MR | Zbl

[3] Vorobets Ya.B., Galperin G.A., Stepin A.M., “Periodicheskie bilyardnye traektorii v mnogougolnikakh: mekhanizmy rozhdeniya”, UMN, 47:3 (1992), 9–74 | MR | Zbl

[4] Cipra B., Hanson R., Kolan A., “Periodic trajectories in right triangle billiards”, Phys. Rev. E (3), 52 (1995), 2066–2071 | DOI | MR

[5] Gutkin E., Troubetzkoy S., “Directional flows and strong recurrence for polygonal billiards”, Proc. of the International congress of dynamical systems (Montevideo, Uruguay, 1995), eds. F. Ledrappier et al., Longman, Harlow, 1996, 21–45 | MR | Zbl

[6] Cassels J. W. S., An introduction to Diophantine approximation, Cambridge Univ. Press, Cambridge, 1957 | MR | Zbl

[7] Jarnik V., “Diophantische Approximationen und Hausdorff Maß”, Mat. sbornik, 36 (1929), 371–382 | Zbl

[8] Levesley J., “A general inhomogeneous Jarnik–Besicovitch theorem”, J. Number Theory, 71 (1998), 65–80 | DOI | MR | Zbl

[9] Troubetzkoy S., “Recurrence and periodic billiard orbits in polygons”, Regul. Chaotic Dyn., 9:1 (2004), 1–12 | DOI | MR | Zbl

[10] Falconer K., The geometry of fractal sets, Cambridge Univ. Press, Cambridge, 1985 | MR | Zbl

[11] Pesin Ya., Dimension theory in dynamical systems, Univ. of Chicago Press, Chicago, 1997 | MR

[12] Gutkin E., “Billiard in polygons”, Phys. D, 19 (1986), 311–333 | DOI | MR | Zbl

[13] Gutkin E., “Billiard in polygons: survey of recent results”, J. Statist. Phys., 83 (1996), 7–26 | DOI | MR | Zbl

[14] Tabachnikov S., “Billiards”, Panoramas et syntheses, Soc. Math. France, Paris, 1995 | MR | Zbl

[15] Dodson M., Rynne B., Vickers J., “Diophantine approximation and a lower bound for Hausdorff dimension”, Mathematika, 37 (1990), 59–73 | MR | Zbl

[16] Kra B., Schmeling J., “Diophantine classes, dimension and Denjoy maps”, Acta Arith., 105:4 (2002), 323–340 | DOI | MR | Zbl