An individual ergodic theorem with respect to a~uniform
Sbornik. Mathematics, Tome 194 (2003) no. 2, pp. 237-250
Voir la notice de l'article provenant de la source Math-Net.Ru
A non-associative analogue of the Banach principle is developed for
measurable elements with respect to a $JBW$-algebra.
On the basis of it an individual ergodic theorem is proved for subsequences
generated by means of uniform sequences.
@article{SM_2003_194_2_a3,
author = {A. K. Karimov and F. M. Mukhamedov},
title = {An individual ergodic theorem with respect to a~uniform},
journal = {Sbornik. Mathematics},
pages = {237--250},
publisher = {mathdoc},
volume = {194},
number = {2},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2003_194_2_a3/}
}
A. K. Karimov; F. M. Mukhamedov. An individual ergodic theorem with respect to a~uniform. Sbornik. Mathematics, Tome 194 (2003) no. 2, pp. 237-250. http://geodesic.mathdoc.fr/item/SM_2003_194_2_a3/