An individual ergodic theorem with respect to a uniform
Sbornik. Mathematics, Tome 194 (2003) no. 2, pp. 237-250 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A non-associative analogue of the Banach principle is developed for measurable elements with respect to a $JBW$-algebra. On the basis of it an individual ergodic theorem is proved for subsequences generated by means of uniform sequences.
@article{SM_2003_194_2_a3,
     author = {A. K. Karimov and F. M. Mukhamedov},
     title = {An individual ergodic theorem with respect to a~uniform},
     journal = {Sbornik. Mathematics},
     pages = {237--250},
     year = {2003},
     volume = {194},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_2_a3/}
}
TY  - JOUR
AU  - A. K. Karimov
AU  - F. M. Mukhamedov
TI  - An individual ergodic theorem with respect to a uniform
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 237
EP  - 250
VL  - 194
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_2_a3/
LA  - en
ID  - SM_2003_194_2_a3
ER  - 
%0 Journal Article
%A A. K. Karimov
%A F. M. Mukhamedov
%T An individual ergodic theorem with respect to a uniform
%J Sbornik. Mathematics
%D 2003
%P 237-250
%V 194
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2003_194_2_a3/
%G en
%F SM_2003_194_2_a3
A. K. Karimov; F. M. Mukhamedov. An individual ergodic theorem with respect to a uniform. Sbornik. Mathematics, Tome 194 (2003) no. 2, pp. 237-250. http://geodesic.mathdoc.fr/item/SM_2003_194_2_a3/

[1] Segal I., “A non-commutative extension of abstract integration”, Ann. of Math. (2), 57 (1953), 401–457 | DOI | MR | Zbl

[2] Yeadon F. J., “Ergodic theorems for semifinite von Neumann algebras I”, J. London Math. Soc. (2), 16:2 (1977), 326–332 | DOI | MR | Zbl

[3] Goldshtein M. Sh., “Teoremy skhodimosti pochti vsyudu v algebrakh fon Neimana”, J. Operator Theory, 6 (1981), 233–311 | MR | Zbl

[4] Lance E. C., “Non-commutative ergodic theory”, Proc. of the meeting on $C^*$-algebras and their appl. to theor. phys. (Roma, Citta Universitaria), 1975, 70–79

[5] Paszkewicz A., “Convergence in $W^*$-algebras”, J. Funct. Anal., 15 (1974), 103–116 | DOI

[6] Alfsen E. M., Shultz F. W., Stormer E., “A Gelfand–Neumark theorem for Jordan algebras”, Adv. Math., 128:1 (1978), 11–56 | DOI | MR

[7] Shultz F. W., “On normed Jordan algebras which are Banach dual spaces”, J. Funct. Anal., 31:3 (1979), 360–376 | DOI | MR | Zbl

[8] Ayupov Sh. A., “Ergodicheskie teoremy dlya markovskikh operatorov v iordanovykh algebrakh. II”, Izv. AN UzSSR. Ser. fiz., matem., 1982, no. 5, 7–12 | MR | Zbl

[9] Karimov A. K., “Skhodimosti pochti vsyudu na $JW$-algebrakh i ikh prilozheniya k usilennym zakonam bolshikh chisel”, Dokl. AN UzSSR, 1985, no. 11, 4–6 | MR | Zbl

[10] Karimov A. K., “O svoistvakh skhodimosti po mere v iordanovykh algebrakh”, Matematicheskii analiz i geometriya, Nauchn. trudy TashGU (Tashkent, 1983), 38–41

[11] Berdikulov M. A., “Prostranstva $L_1$ i $L_2$ dlya polukonechnykh $JBW$-algebr”, Dokl. AN UzSSR, 1982, no. 6, 3–4 | MR | Zbl

[12] Berdikulov M. A., Azizov E. Yu., “Uslovnye ozhidaniya na JBW-algebrakh”, Izv. AN UzSSR. Ser. fiz., matem., 1987, no. 2, 12–16 | MR | Zbl

[13] Egamberdiev O. I., Individualnaya ergodicheskaya teorema dlya markovskikh operatorov, deistvuyuschikh na polukonechnykh $JBW$-algebrakh, Dep. v VINITI No 1263-75 dep., 1985

[14] Ayupov Sh. A., “Supermartingaly v iordanovykh algebrakh”, Sluchainye protsessy i matematicheskaya statistika, Fan, Tashkent, 1983, 20–31 | MR

[15] Ayupov Sh. A., “Statisticheskie ergodicheskie teoremy v iordanovykh algebrakh”, UMN, 36:6 (1981), 201–202 | MR | Zbl

[16] Ayupov Sh. A., “Ergodic theorems in Jordan algebras of measurable elements”, An. Univ. Craiova Ser. Mat. Fis. Chim., 9 (1981), 22–28 | MR | Zbl

[17] Baxter J. R., Olsen J. H., “Weighted and subsequential ergodic theorems”, Canad. J. Math., 35:1 (1983), 145–166 | MR | Zbl

[18] Bellow A., Losert V., “The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences”, Trans. Amer. Math. Soc., 288:1 (1985), 307–345 | DOI | MR | Zbl

[19] Boshernitzan M., Wierdl M., “Ergodic theorems along sequences and Hardy fields”, Proc. Natl. Acad. Sci. USA, 93 (1996), 8205–8207 | DOI | MR | Zbl

[20] Jones R. L., Lin M., Olsen J. H., “Weighted ergodic theorems along subsequences of density zero”, New York J. Math., 3A (1998), 89–98 | MR | Zbl

[21] Lin M., Olsen J. H., Tempelman A., “On modulated ergodic theorems for Dunford–Schwartz operators”, Illinois J. Math., 43:1 (1999), 542–567 | MR | Zbl

[22] Danford N., Shvarts Dzh. T., Lineinye operatory, t. 1, Mir, M., 1962

[23] Brunel A., Keane M., “Ergodic theorems for operator sequences”, Z. Wahrscheinlichkeitstheorie Verw. Geb., 12 (1969), 231–240 | DOI | MR | Zbl

[24] Sato R., “Operator averages for subsequences”, Math. J. Okayama Univ., 22 (1980), 161–168 | MR | Zbl

[25] Bellow A, Jones R. L., “A Banach principle for $L^\infty$”, Adv. Math., 120 (1996), 115–172 | DOI | MR

[26] Goldstein M., Litvinov S., “Banach principle in the space of $\tau$-measurable operators”, Studia Math., 143:1 (2000), 43–51 | MR

[27] Kornfeld N. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl

[28] Sakai S., $C^*$-algebras and $W^*$-algebras, Springer-Verlag, Berlin, 1971 | MR | Zbl

[29] Dang-Ngoc N., “A random ergodic theorem in von Neumann algebras”, Proc. Amer. Math. Soc., 86:2 (1982), 605–608 | DOI | MR | Zbl

[30] Hensz E., “On some ergodic theorems for von Neumann algebras”, Probability theory on vector spaces, III, Proc. Conf. (Lublin, August 1983), Lecture Notes in Math., 1080, 1984, 119–123 | MR | Zbl

[31] Litvinov S., Mukhamedov F. M., “On individual subsequential ergodic theorem in von Neumann algebras”, Studia Math., 145:1 (2001), 55–62 | DOI | MR | Zbl