An individual ergodic theorem with respect to a~uniform
Sbornik. Mathematics, Tome 194 (2003) no. 2, pp. 237-250

Voir la notice de l'article provenant de la source Math-Net.Ru

A non-associative analogue of the Banach principle is developed for measurable elements with respect to a $JBW$-algebra. On the basis of it an individual ergodic theorem is proved for subsequences generated by means of uniform sequences.
@article{SM_2003_194_2_a3,
     author = {A. K. Karimov and F. M. Mukhamedov},
     title = {An individual ergodic theorem with respect to a~uniform},
     journal = {Sbornik. Mathematics},
     pages = {237--250},
     publisher = {mathdoc},
     volume = {194},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_2_a3/}
}
TY  - JOUR
AU  - A. K. Karimov
AU  - F. M. Mukhamedov
TI  - An individual ergodic theorem with respect to a~uniform
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 237
EP  - 250
VL  - 194
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_2_a3/
LA  - en
ID  - SM_2003_194_2_a3
ER  - 
%0 Journal Article
%A A. K. Karimov
%A F. M. Mukhamedov
%T An individual ergodic theorem with respect to a~uniform
%J Sbornik. Mathematics
%D 2003
%P 237-250
%V 194
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2003_194_2_a3/
%G en
%F SM_2003_194_2_a3
A. K. Karimov; F. M. Mukhamedov. An individual ergodic theorem with respect to a~uniform. Sbornik. Mathematics, Tome 194 (2003) no. 2, pp. 237-250. http://geodesic.mathdoc.fr/item/SM_2003_194_2_a3/