Vaisman--Gray manifolds with $J$-invariant
Sbornik. Mathematics, Tome 194 (2003) no. 2, pp. 225-235

Voir la notice de l'article provenant de la source Math-Net.Ru

The class of Vaisman–Gray manifolds of dimension higher than 4 with $J$-invariant conformal curvature tensor is shown to coincide with the class of locally conformally nearly Kähler manifolds. Classifications of conformally flat and conformally para-Kähler Vaisman–Gray manifolds are obtained.
@article{SM_2003_194_2_a2,
     author = {L. A. Ignatochkina},
     title = {Vaisman--Gray manifolds with $J$-invariant},
     journal = {Sbornik. Mathematics},
     pages = {225--235},
     publisher = {mathdoc},
     volume = {194},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_2_a2/}
}
TY  - JOUR
AU  - L. A. Ignatochkina
TI  - Vaisman--Gray manifolds with $J$-invariant
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 225
EP  - 235
VL  - 194
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_2_a2/
LA  - en
ID  - SM_2003_194_2_a2
ER  - 
%0 Journal Article
%A L. A. Ignatochkina
%T Vaisman--Gray manifolds with $J$-invariant
%J Sbornik. Mathematics
%D 2003
%P 225-235
%V 194
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2003_194_2_a2/
%G en
%F SM_2003_194_2_a2
L. A. Ignatochkina. Vaisman--Gray manifolds with $J$-invariant. Sbornik. Mathematics, Tome 194 (2003) no. 2, pp. 225-235. http://geodesic.mathdoc.fr/item/SM_2003_194_2_a2/