Asymptotic analysis of a double porosity model with thin fissures
Sbornik. Mathematics, Tome 194 (2003) no. 1, pp. 123-150 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An initial-boundary-value problem is considered for the parabolic equation $$ \Phi^\varepsilon(x)u^\varepsilon_t-\operatorname{div}(A^\varepsilon(x) \nabla u^\varepsilon)=f^\varepsilon(x), \qquad x\in\Omega, \quad t>0, $$ with discontinuous diffusion tensor $A^\varepsilon(x)$. This tensor is assumed to degenerate as $\varepsilon\to0$ in the whole of the domain $\Omega$ except on a set ${\mathscr F}^{(\varepsilon)}$ of asymptotically small measure. It is shown that the behaviour of the solutions $u^\varepsilon$ as $\varepsilon\to0$ is described by a homogenized model with memory.
@article{SM_2003_194_1_a6,
     author = {L. S. Pankratov and V. A. Rybalko},
     title = {Asymptotic analysis of a~double porosity model with thin fissures},
     journal = {Sbornik. Mathematics},
     pages = {123--150},
     year = {2003},
     volume = {194},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_1_a6/}
}
TY  - JOUR
AU  - L. S. Pankratov
AU  - V. A. Rybalko
TI  - Asymptotic analysis of a double porosity model with thin fissures
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 123
EP  - 150
VL  - 194
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_1_a6/
LA  - en
ID  - SM_2003_194_1_a6
ER  - 
%0 Journal Article
%A L. S. Pankratov
%A V. A. Rybalko
%T Asymptotic analysis of a double porosity model with thin fissures
%J Sbornik. Mathematics
%D 2003
%P 123-150
%V 194
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2003_194_1_a6/
%G en
%F SM_2003_194_1_a6
L. S. Pankratov; V. A. Rybalko. Asymptotic analysis of a double porosity model with thin fissures. Sbornik. Mathematics, Tome 194 (2003) no. 1, pp. 123-150. http://geodesic.mathdoc.fr/item/SM_2003_194_1_a6/

[1] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[2] Bensoussan A., Lions J.-L., Papanicolau G., Asymptotic analysis for periodic structures, North-Holland, Amsterdam, 1978 | MR

[3] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[4] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Fizmatlit, M., 1993 | MR | Zbl

[5] Marchenko V. A., Khruslov E. Ya., Kraevye zadachi v oblastyakh s melko-zernistoi granitsei, Naukova dumka, Kiev, 1974

[6] Barenblatt G. I., Zheltov Yu. P., Kochina I. N., “Osnovy teorii techeniya odnorodnoi zhidkosti v poristykh sredakh”, Mezhvuz. tematich. sb. Prikl. matem. i mekh., 24 (1960), 852–854 | MR

[7] Arbogast T., Douglas J., Hornung U., “Derivation of the double porosity model of single phase flow via homogenization theory”, SIAM J. Appl. Math., 21 (1990), 823–826 | DOI | MR

[8] Bourgeat A., Goncharenko M., Panfilov M., Pankratov L., “A general double porosity model”, C. R. Acad. Sci. Paris. Sér. IIb., 327 (1999), 1245–1250 | Zbl

[9] Bourgeat A., Luckhaus S., Mikelic A., “Convergence of the homogenization process for a double porosity model of immiscible two phase flow”, SIAM J. Appl. Math., 27 (1996), 1520–1543 | DOI | MR | Zbl

[10] Sandrakov G. V., “Osrednenie parabolicheskikh uravnenii s kontrastnymi koeffitsientami”, Izv. RAN. Ser. matem., 63:4 (1999), 17–224 | MR

[11] Hornung U. (ed.), Homogenization and porous media, Springer-Verlag, New York, 1997 | MR

[12] Zhikov V. V., “Svyaznost i usrednenie. Primery fraktalnoi provodimosti”, Matem. sb., 187:8 (1996), 3–40 | MR | Zbl

[13] Zhikov V. V., “O vesovykh sobolevskikh prostranstvakh”, Matem. sb., 189:8 (1998), 27–58 | MR | Zbl

[14] Zhikov V. V., “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Matem. sb., 191:7 (2000), 31–72 | MR | Zbl

[15] Auriault J. L., “Effective macroscopic description for heat conduction in periodic composites”, Int. J. Heat Mass Transfer., 26:6 (1983), 861–869 | Zbl

[16] Bourgeat A., Mikelic A., Piatnitski A., “Modèle de double porosité aléatoire”, C. R. Acad. Sci. Paris. Sér. I, 327 (1998), 99–104 | MR | Zbl

[17] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[18] Svischeva E. V., “Asimptoticheskoe povedenie reshenii reshenii vtoroi kraevoi zadachi v oblastyakh ubyvayuschego ob'ema”, Teoriya operatorov i subgarmonicheskie funktsii, Naukova dumka, Kiev, 1991, 126–134 | Zbl

[19] Fenchenko V. M., Khruslov E. Ya., “Asimptoticheskoe povedenie reshenii differentsialnykh uravnenii v chastnykh proizvodnykh s silno ostsilliruyuschei matritsei koeffitsientov, kotoraya ne udovletvoryaet usloviyu ravnomernoi ogranichennosti”, Dokl. AN USSR. Ser. A, 1981, no. 4, 23–27 | MR | Zbl

[20] Khruslov E. Ya., “Homogenized models of composite media”, Composite media and homogenization theory, Progr. Nonlinear Differential Equations. Appl., 5, ed. G. Dal Maso, G. F. Dell'Antonio, Birkhäuser, Boston, 1991, 159–182 | MR

[21] Khruslov E. Ya., “Asimptoticheskoe povedenie reshenii vtoroi kraevoi zadachi pri izmelchenii granitsy oblasti”, Matem. sb., 106:4 (1978), 603–621 | MR

[22] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[23] Boutet de Monvel L., Khruslov E. Ya., “Averaging of the diffusion equation on Riemannian manifolds of complex microstructure”, Trans. Moscow Math. Soc., 1997, 138–161 | MR

[24] Fenchenko V. N., Asimptotika reshenii differentsialnykh uravnenii v chastnykh proizvodnykh s silno ostsilliruyuschei i neogranichennoi matritsei koeffitsientov, Preprint No 30, FTINT AN USSR, Kharkov, 1980

[25] Cioranescu D., Saint Jean Paulin J., Homogenization of reticulated structures, Appl. Math. Sci., 136, Springer-Verlag, New York, 1999 | MR | Zbl