Multiplication modules over non-commutative rings
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 194 (2003) no. 12, pp. 1837-1864
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that each submodule of a multiplication module over a regular ring
is a multiplicative module. If $A$ is a ring with commutative multiplication of right
ideals, then each projective right ideal is a multiplicative module, and a finitely generated  
$A$-module $M$ is a multiplicative module if and only if all its localizations
with respect to maximal right ideals of $A$ are cyclic modules over the corresponding localizations of $A$. In addition, several known results on multiplication modules over
commutative rings are extended to modules over not necessarily commutative rings.
			
            
            
            
          
        
      @article{SM_2003_194_12_a3,
     author = {A. A. Tuganbaev},
     title = {Multiplication modules over non-commutative rings},
     journal = {Sbornik. Mathematics},
     pages = {1837--1864},
     publisher = {mathdoc},
     volume = {194},
     number = {12},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_12_a3/}
}
                      
                      
                    A. A. Tuganbaev. Multiplication modules over non-commutative rings. Sbornik. Mathematics, Tome 194 (2003) no. 12, pp. 1837-1864. http://geodesic.mathdoc.fr/item/SM_2003_194_12_a3/