Multiplication modules over non-commutative rings
Sbornik. Mathematics, Tome 194 (2003) no. 12, pp. 1837-1864

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that each submodule of a multiplication module over a regular ring is a multiplicative module. If $A$ is a ring with commutative multiplication of right ideals, then each projective right ideal is a multiplicative module, and a finitely generated $A$-module $M$ is a multiplicative module if and only if all its localizations with respect to maximal right ideals of $A$ are cyclic modules over the corresponding localizations of $A$. In addition, several known results on multiplication modules over commutative rings are extended to modules over not necessarily commutative rings.
@article{SM_2003_194_12_a3,
     author = {A. A. Tuganbaev},
     title = {Multiplication modules over non-commutative rings},
     journal = {Sbornik. Mathematics},
     pages = {1837--1864},
     publisher = {mathdoc},
     volume = {194},
     number = {12},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_12_a3/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Multiplication modules over non-commutative rings
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1837
EP  - 1864
VL  - 194
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_12_a3/
LA  - en
ID  - SM_2003_194_12_a3
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Multiplication modules over non-commutative rings
%J Sbornik. Mathematics
%D 2003
%P 1837-1864
%V 194
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2003_194_12_a3/
%G en
%F SM_2003_194_12_a3
A. A. Tuganbaev. Multiplication modules over non-commutative rings. Sbornik. Mathematics, Tome 194 (2003) no. 12, pp. 1837-1864. http://geodesic.mathdoc.fr/item/SM_2003_194_12_a3/