@article{SM_2003_194_12_a2,
author = {S. P. Suetin},
title = {Convergence of {Chebysh\"ev} continued fractions for elliptic functions},
journal = {Sbornik. Mathematics},
pages = {1807--1835},
year = {2003},
volume = {194},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2003_194_12_a2/}
}
S. P. Suetin. Convergence of Chebyshëv continued fractions for elliptic functions. Sbornik. Mathematics, Tome 194 (2003) no. 12, pp. 1807-1835. http://geodesic.mathdoc.fr/item/SM_2003_194_12_a2/
[1] Chebyshëv P. L., “O nepreryvnykh drobyakh”, Uchenye zapiski Imp. akademii nauk, III (1855), 636–664; Полное собрание сочинений, т. II, Изд-во АН СССР, М.–Л., 1948 | MR
[2] Markov A. A., “Deux démonstrations de la convergence de certaines fractions continues”, Acta Math., 19 (1895), 93–104 ; “Два доказательства сходимости некоторых непрерывных дробей”, Избранные труды по теории непрерывных дробей и теории функций, наименее уклоняющихся от нуля, Гостехиздат, М., 1948, 106–119 | DOI | MR
[3] Akhiezer N. I., Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | Zbl
[4] Akhiezer N. I., “Ob ortogonalnykh mnogochlenakh na neskolkikh intervalakh”, Dokl. AN SSSR, 134:1 (1960), 9–12 | MR | Zbl
[5] Akhiezer N. I., Tomchuk Yu. Ya., “K teorii ortogonalnykh mnogochlenov na neskolkikh intervalakh”, Dokl. AN SSSR, 138:4 (1961), 743–746 | MR | Zbl
[6] Dumas S., Sur le développement des fonctions elliptiques en fractions continues. Thesis, Zürich, 1908 | Zbl
[7] Nikishin E. M., “O skhodimosti diagonalnykh approksimatsii Pade dlya nekotorykh funktsii”, Matem. sb., 101 (143):2 (1976), 280–292 | MR | Zbl
[8] Stahl H., “Orthogonal polynomials with complex valued weight function. I, II”, Constr. Approx., 2 (1986), 225–240 ; 241–251 | DOI | MR | Zbl | Zbl
[9] Nuttall J., “Asymptotics of diagonal Hermite–Padé polynomials”, J. Approx. Theory, 42 (1984), 299–386 | DOI | MR | Zbl
[10] Stahl H., “Extremal domains associated with an analytic function. I, II”, Complex Variables Theory Appl., 4 (1985), 311–324 ; 325–338 | MR | Zbl | Zbl
[11] Stahl H., “Structure of extremal domains associated with an analytic function”, Complex Variables Theory Appl., 4 (1985), 339–354 | MR | Zbl
[12] Bernshtein S. N., O mnogochlenakh, ortogonalnykh v konechnom intervale, ONTI, Kharkov, 1937
[13] Segë G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962
[14] Suetin S. P., “O ravnomernoi skhodimosti diagonalnykh approksimatsii Pade dlya giperellipticheskikh funktsii”, Matem. sb., 191:9 (2000), 81–114 | MR | Zbl
[15] Suetin S. P., “Approksimatsii Pade i effektivnoe analiticheskoe prodolzhenie stepennogo ryada”, UMN, 57:1 (2002), 45–142 | MR | Zbl
[16] Suetin S. P., “Ob asimptoticheskikh svoistvakh polyusov diagonalnykh approksimatsii Pade dlya nekotorykh obobschenii markovskikh funktsii”, Matem. sb., 193:12 (2002), 105–133 | MR | Zbl
[17] Nuttall J., “Pade polynomial asymptotics from a singular integral equation”, Constr. Approx., 6:2 (1990), 157–166 | DOI | MR | Zbl
[18] Zverovich E. I., “Kraevye zadachi teorii analiticheskikh funktsii v gëlderovskikh klassakh na rimanovykh poverkhnostyakh”, UMN, 26:1 (1971), 113–180 | MR
[19] Dubrovin B. A., “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2 (1981), 11–80 | MR | Zbl
[20] Springer Dzh., Vvedenie v teoriyu rimanovykh poverkhnostei, IL, M., 1960
[21] Forster O., Rimanovy poverkhnosti, Mir, M., 1980 | MR
[22] Stahl H., “Diagonal Padé approximants to hyperelliptic functions”, Ann. Fac. Sci. Toulouse Math. (6). Spec. Iss., 1996, 121–193 | MR | Zbl
[23] Chandrasekkharan K., Vvedenie v analiticheskuyu teoriyu chisel, Mir, M., 1974 | MR