Convergence of Chebyshëv continued fractions for elliptic functions
Sbornik. Mathematics, Tome 194 (2003) no. 12, pp. 1807-1835 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Dumas's classical theorem on the behaviour of the Chebyshëv continued fraction corresponding to an elliptic function $f(z)=\sqrt{(z-e_1)\dotsb(z-e_4)}-z^2+z{(e_1+\dotsb+e_4)}/2$ holomorphic at $z=\infty$ is extended to a fairly general class of elliptic functions. The behaviour of the Chebyshëv continued fractions corresponding to functions in that class is characterized in terms relating to the mutual position of the branch points $e_1,\dots,e_4$. The proof is based on the investigation of the properties of the solution of a certain Riemann boundary-value problem on an elliptic Riemann surface.
@article{SM_2003_194_12_a2,
     author = {S. P. Suetin},
     title = {Convergence of {Chebysh\"ev} continued fractions for elliptic functions},
     journal = {Sbornik. Mathematics},
     pages = {1807--1835},
     year = {2003},
     volume = {194},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_12_a2/}
}
TY  - JOUR
AU  - S. P. Suetin
TI  - Convergence of Chebyshëv continued fractions for elliptic functions
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1807
EP  - 1835
VL  - 194
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_12_a2/
LA  - en
ID  - SM_2003_194_12_a2
ER  - 
%0 Journal Article
%A S. P. Suetin
%T Convergence of Chebyshëv continued fractions for elliptic functions
%J Sbornik. Mathematics
%D 2003
%P 1807-1835
%V 194
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2003_194_12_a2/
%G en
%F SM_2003_194_12_a2
S. P. Suetin. Convergence of Chebyshëv continued fractions for elliptic functions. Sbornik. Mathematics, Tome 194 (2003) no. 12, pp. 1807-1835. http://geodesic.mathdoc.fr/item/SM_2003_194_12_a2/

[1] Chebyshëv P. L., “O nepreryvnykh drobyakh”, Uchenye zapiski Imp. akademii nauk, III (1855), 636–664; Полное собрание сочинений, т. II, Изд-во АН СССР, М.–Л., 1948 | MR

[2] Markov A. A., “Deux démonstrations de la convergence de certaines fractions continues”, Acta Math., 19 (1895), 93–104 ; “Два доказательства сходимости некоторых непрерывных дробей”, Избранные труды по теории непрерывных дробей и теории функций, наименее уклоняющихся от нуля, Гостехиздат, М., 1948, 106–119 | DOI | MR

[3] Akhiezer N. I., Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | Zbl

[4] Akhiezer N. I., “Ob ortogonalnykh mnogochlenakh na neskolkikh intervalakh”, Dokl. AN SSSR, 134:1 (1960), 9–12 | MR | Zbl

[5] Akhiezer N. I., Tomchuk Yu. Ya., “K teorii ortogonalnykh mnogochlenov na neskolkikh intervalakh”, Dokl. AN SSSR, 138:4 (1961), 743–746 | MR | Zbl

[6] Dumas S., Sur le développement des fonctions elliptiques en fractions continues. Thesis, Zürich, 1908 | Zbl

[7] Nikishin E. M., “O skhodimosti diagonalnykh approksimatsii Pade dlya nekotorykh funktsii”, Matem. sb., 101 (143):2 (1976), 280–292 | MR | Zbl

[8] Stahl H., “Orthogonal polynomials with complex valued weight function. I, II”, Constr. Approx., 2 (1986), 225–240 ; 241–251 | DOI | MR | Zbl | Zbl

[9] Nuttall J., “Asymptotics of diagonal Hermite–Padé polynomials”, J. Approx. Theory, 42 (1984), 299–386 | DOI | MR | Zbl

[10] Stahl H., “Extremal domains associated with an analytic function. I, II”, Complex Variables Theory Appl., 4 (1985), 311–324 ; 325–338 | MR | Zbl | Zbl

[11] Stahl H., “Structure of extremal domains associated with an analytic function”, Complex Variables Theory Appl., 4 (1985), 339–354 | MR | Zbl

[12] Bernshtein S. N., O mnogochlenakh, ortogonalnykh v konechnom intervale, ONTI, Kharkov, 1937

[13] Segë G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962

[14] Suetin S. P., “O ravnomernoi skhodimosti diagonalnykh approksimatsii Pade dlya giperellipticheskikh funktsii”, Matem. sb., 191:9 (2000), 81–114 | MR | Zbl

[15] Suetin S. P., “Approksimatsii Pade i effektivnoe analiticheskoe prodolzhenie stepennogo ryada”, UMN, 57:1 (2002), 45–142 | MR | Zbl

[16] Suetin S. P., “Ob asimptoticheskikh svoistvakh polyusov diagonalnykh approksimatsii Pade dlya nekotorykh obobschenii markovskikh funktsii”, Matem. sb., 193:12 (2002), 105–133 | MR | Zbl

[17] Nuttall J., “Pade polynomial asymptotics from a singular integral equation”, Constr. Approx., 6:2 (1990), 157–166 | DOI | MR | Zbl

[18] Zverovich E. I., “Kraevye zadachi teorii analiticheskikh funktsii v gëlderovskikh klassakh na rimanovykh poverkhnostyakh”, UMN, 26:1 (1971), 113–180 | MR

[19] Dubrovin B. A., “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2 (1981), 11–80 | MR | Zbl

[20] Springer Dzh., Vvedenie v teoriyu rimanovykh poverkhnostei, IL, M., 1960

[21] Forster O., Rimanovy poverkhnosti, Mir, M., 1980 | MR

[22] Stahl H., “Diagonal Padé approximants to hyperelliptic functions”, Ann. Fac. Sci. Toulouse Math. (6). Spec. Iss., 1996, 121–193 | MR | Zbl

[23] Chandrasekkharan K., Vvedenie v analiticheskuyu teoriyu chisel, Mir, M., 1974 | MR