Convergence of Chebysh\"ev continued fractions for elliptic functions
Sbornik. Mathematics, Tome 194 (2003) no. 12, pp. 1807-1835

Voir la notice de l'article provenant de la source Math-Net.Ru

Dumas's classical theorem on the behaviour of the Chebyshëv continued fraction corresponding to an elliptic function $f(z)=\sqrt{(z-e_1)\dotsb(z-e_4)}-z^2+z{(e_1+\dotsb+e_4)}/2$ holomorphic at $z=\infty$ is extended to a fairly general class of elliptic functions. The behaviour of the Chebyshëv continued fractions corresponding to functions in that class is characterized in terms relating to the mutual position of the branch points $e_1,\dots,e_4$. The proof is based on the investigation of the properties of the solution of a certain Riemann boundary-value problem on an elliptic Riemann surface.
@article{SM_2003_194_12_a2,
     author = {S. P. Suetin},
     title = {Convergence of {Chebysh\"ev} continued fractions for elliptic functions},
     journal = {Sbornik. Mathematics},
     pages = {1807--1835},
     publisher = {mathdoc},
     volume = {194},
     number = {12},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_12_a2/}
}
TY  - JOUR
AU  - S. P. Suetin
TI  - Convergence of Chebysh\"ev continued fractions for elliptic functions
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1807
EP  - 1835
VL  - 194
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_12_a2/
LA  - en
ID  - SM_2003_194_12_a2
ER  - 
%0 Journal Article
%A S. P. Suetin
%T Convergence of Chebysh\"ev continued fractions for elliptic functions
%J Sbornik. Mathematics
%D 2003
%P 1807-1835
%V 194
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2003_194_12_a2/
%G en
%F SM_2003_194_12_a2
S. P. Suetin. Convergence of Chebysh\"ev continued fractions for elliptic functions. Sbornik. Mathematics, Tome 194 (2003) no. 12, pp. 1807-1835. http://geodesic.mathdoc.fr/item/SM_2003_194_12_a2/