Beta functions of Bruhat--Tits buildings and deformation of $l^2$
Sbornik. Mathematics, Tome 194 (2003) no. 12, pp. 1775-1805
Voir la notice de l'article provenant de la source Math-Net.Ru
For the space $\operatorname{Lat}_n$ of all lattices in an $n$-dimensional
$p$-adic linear space an analogue of the matrix beta function is constructed; this beta function can degenerate to the Tamagawa zeta function. An analogue of Berezin
kernels for $\operatorname{Lat}_n$ is proposed. Conditions for the positive-definiteness of these kernels and an explicit Plancherel's formula are obtained.
@article{SM_2003_194_12_a1,
author = {Yu. A. Neretin},
title = {Beta functions of {Bruhat--Tits} buildings and deformation of $l^2$},
journal = {Sbornik. Mathematics},
pages = {1775--1805},
publisher = {mathdoc},
volume = {194},
number = {12},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2003_194_12_a1/}
}
Yu. A. Neretin. Beta functions of Bruhat--Tits buildings and deformation of $l^2$. Sbornik. Mathematics, Tome 194 (2003) no. 12, pp. 1775-1805. http://geodesic.mathdoc.fr/item/SM_2003_194_12_a1/