Beta functions of Bruhat–Tits buildings and deformation of $l^2$
Sbornik. Mathematics, Tome 194 (2003) no. 12, pp. 1775-1805 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the space $\operatorname{Lat}_n$ of all lattices in an $n$-dimensional $p$-adic linear space an analogue of the matrix beta function is constructed; this beta function can degenerate to the Tamagawa zeta function. An analogue of Berezin kernels for $\operatorname{Lat}_n$ is proposed. Conditions for the positive-definiteness of these kernels and an explicit Plancherel's formula are obtained.
@article{SM_2003_194_12_a1,
     author = {Yu. A. Neretin},
     title = {Beta functions of {Bruhat{\textendash}Tits} buildings and deformation of $l^2$},
     journal = {Sbornik. Mathematics},
     pages = {1775--1805},
     year = {2003},
     volume = {194},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_12_a1/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - Beta functions of Bruhat–Tits buildings and deformation of $l^2$
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1775
EP  - 1805
VL  - 194
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_12_a1/
LA  - en
ID  - SM_2003_194_12_a1
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T Beta functions of Bruhat–Tits buildings and deformation of $l^2$
%J Sbornik. Mathematics
%D 2003
%P 1775-1805
%V 194
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2003_194_12_a1/
%G en
%F SM_2003_194_12_a1
Yu. A. Neretin. Beta functions of Bruhat–Tits buildings and deformation of $l^2$. Sbornik. Mathematics, Tome 194 (2003) no. 12, pp. 1775-1805. http://geodesic.mathdoc.fr/item/SM_2003_194_12_a1/

[1] Brown K., Buildings, Springer-Verlag, New York, 1989 | MR

[2] Garrett P., Buildings and classical groups, Chapman Hall, London, 1997 | MR | Zbl

[3] Gindikin S. G., “Analiz na odnorodnykh prostranstvakh”, UMN, 19:4 (1964), 3–92 | MR | Zbl

[4] Neretin Yu. A., “Matrichnye analogi beta-funktsii i formula Plansherelya dlya kern-predstavlenii Berezina”, Matem. sb., 191:5 (2000), 67–100 ; http://arXiv.org/abs/math/9905045 | MR | Zbl

[5] Neretin Yu. A., “Plancherel formula for Berezin deformation of $L^2$ on Riemannian symmetric space”, J. Funct. Anal., 189 (2002), 336–408 ; http://arXiv.org/abs/math/991102 | DOI | MR | Zbl

[6] Neretin Yu. A., “Razdelenie spektrov v analize yader Berezina”, Funkts. analiz i ego prilozh., 34:3 (2000), 49–62 | MR | Zbl

[7] Neretin Yu. A., “Groups of hierarchomorphisms of trees and related Hilbert spaces”, J. Funct. Anal., 200:2 (2003), 505–535 ; http://arXiv.org/abs/math/0106243 | DOI | MR | Zbl

[8] Haagerup U., “An example of a nonnuclear $C^*$-algebra, which has the metric approximation property”, Invent. Math., 50:3 (1979), 279–293 | DOI | MR | Zbl

[9] Olshanskii G. I., “Novye bolshie gruppy tipa I”, Sovrem. problemy matem, 16, VINITI, M., 1980, 31–52 | MR

[10] Weil A., Basic number theory, Springer-Verlag, Berlin, 1967 | MR

[11] Macdonald I. G., Symmetric functions and Hall polynomials, Clarendon Press, Oxford, 1995 | MR | Zbl

[12] Makdonald I. G., “Sfericheskie funktsii na gruppe $p$-adicheskogo tipa”, UMN, 28:5 (1973), 155–224 | MR | Zbl

[13] Weil A., “Sur certains groupes d'operateurs unitaires”, Acta Math., 111 (1964), 143–211 | DOI | MR | Zbl

[14] Nazarov M. L., “The oscillator semigroup over nonarchimedian field”, J. Funct. Anal., 128 (1995), 384–438 | DOI | MR | Zbl

[15] Tadic M., “Classification of unitary representations in irreducible representations of general linear group (nonarchimedian case)”, Ann. Sci. École Norm. Sup. (4), 19 (1986), 335–382 | MR | Zbl

[16] Tadic M., “An external approach to unitary representations”, Bull. Amer. Math. Soc. (N.S.), 28:2 (1993), 215–252 ; http://arXiv.org/abs/math/9304215 | DOI | MR | Zbl

[17] Fedoryuk M. V., Asimptotika. Integraly i ryady, Nauka, M., 1987 | MR

[18] Gasper G., Rahman M., Basic hypergeometric series, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl