Approximate controllability of the~Navier--Stokes system in unbounded domains
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 194 (2003) no. 11, pp. 1725-1745
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The question of the approximate controllability for the 2- and
the 3-dimensional Navier–Stokes system defined in the exterior of
a bounded domain $\omega$ or in the entire space is studied. It is shown that one can find
boundary controls or locally distributed controls (having support in a prescribed bounded domain) defined on the right-hand side of the system such  that in prescribed time the solution of the Navier–Stokes system becomes arbitrarily close to an arbitrary prescribed divergence-free vector field.
			
            
            
            
          
        
      @article{SM_2003_194_11_a6,
     author = {P. O. Shorygin},
     title = {Approximate controllability of {the~Navier--Stokes} system in unbounded domains},
     journal = {Sbornik. Mathematics},
     pages = {1725--1745},
     publisher = {mathdoc},
     volume = {194},
     number = {11},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_11_a6/}
}
                      
                      
                    P. O. Shorygin. Approximate controllability of the~Navier--Stokes system in unbounded domains. Sbornik. Mathematics, Tome 194 (2003) no. 11, pp. 1725-1745. http://geodesic.mathdoc.fr/item/SM_2003_194_11_a6/
