Approximate controllability of the~Navier--Stokes system in unbounded domains
Sbornik. Mathematics, Tome 194 (2003) no. 11, pp. 1725-1745

Voir la notice de l'article provenant de la source Math-Net.Ru

The question of the approximate controllability for the 2- and the 3-dimensional Navier–Stokes system defined in the exterior of a bounded domain $\omega$ or in the entire space is studied. It is shown that one can find boundary controls or locally distributed controls (having support in a prescribed bounded domain) defined on the right-hand side of the system such that in prescribed time the solution of the Navier–Stokes system becomes arbitrarily close to an arbitrary prescribed divergence-free vector field.
@article{SM_2003_194_11_a6,
     author = {P. O. Shorygin},
     title = {Approximate controllability of {the~Navier--Stokes} system in unbounded domains},
     journal = {Sbornik. Mathematics},
     pages = {1725--1745},
     publisher = {mathdoc},
     volume = {194},
     number = {11},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_11_a6/}
}
TY  - JOUR
AU  - P. O. Shorygin
TI  - Approximate controllability of the~Navier--Stokes system in unbounded domains
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1725
EP  - 1745
VL  - 194
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_11_a6/
LA  - en
ID  - SM_2003_194_11_a6
ER  - 
%0 Journal Article
%A P. O. Shorygin
%T Approximate controllability of the~Navier--Stokes system in unbounded domains
%J Sbornik. Mathematics
%D 2003
%P 1725-1745
%V 194
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2003_194_11_a6/
%G en
%F SM_2003_194_11_a6
P. O. Shorygin. Approximate controllability of the~Navier--Stokes system in unbounded domains. Sbornik. Mathematics, Tome 194 (2003) no. 11, pp. 1725-1745. http://geodesic.mathdoc.fr/item/SM_2003_194_11_a6/