Approximate controllability of the Navier–Stokes system in unbounded domains
Sbornik. Mathematics, Tome 194 (2003) no. 11, pp. 1725-1745 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The question of the approximate controllability for the 2- and the 3-dimensional Navier–Stokes system defined in the exterior of a bounded domain $\omega$ or in the entire space is studied. It is shown that one can find boundary controls or locally distributed controls (having support in a prescribed bounded domain) defined on the right-hand side of the system such that in prescribed time the solution of the Navier–Stokes system becomes arbitrarily close to an arbitrary prescribed divergence-free vector field.
@article{SM_2003_194_11_a6,
     author = {P. O. Shorygin},
     title = {Approximate controllability of {the~Navier{\textendash}Stokes} system in unbounded domains},
     journal = {Sbornik. Mathematics},
     pages = {1725--1745},
     year = {2003},
     volume = {194},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_11_a6/}
}
TY  - JOUR
AU  - P. O. Shorygin
TI  - Approximate controllability of the Navier–Stokes system in unbounded domains
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1725
EP  - 1745
VL  - 194
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_11_a6/
LA  - en
ID  - SM_2003_194_11_a6
ER  - 
%0 Journal Article
%A P. O. Shorygin
%T Approximate controllability of the Navier–Stokes system in unbounded domains
%J Sbornik. Mathematics
%D 2003
%P 1725-1745
%V 194
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2003_194_11_a6/
%G en
%F SM_2003_194_11_a6
P. O. Shorygin. Approximate controllability of the Navier–Stokes system in unbounded domains. Sbornik. Mathematics, Tome 194 (2003) no. 11, pp. 1725-1745. http://geodesic.mathdoc.fr/item/SM_2003_194_11_a6/

[1] Lions J.-L., Are there connections between turbulence and controllability?, Lecture Notes in Control and Inform. Sci., 144, Springer-Verlag, New York, 1990 | Zbl

[2] Fursikov A. V., Emanuilov O. Yu., “Tochnaya lokalnaya upravlyaemost dvumernykh uravnenii Nave–Stoksa”, Matem. sb., 187:9 (1996), 102–138 | MR

[3] Fursikov A. V., Imanuvilov O. Yu., “Local exact controllability of the Navier–Stokes equations”, C. R. Acad. Sci. Paris Sér. I Math., 323 (1996), 275–280 | MR | Zbl

[4] Fursikov A. V., Emanuilov O. Yu., “Lokalnaya tochnaya upravlyaemost uravnenii Bussineska”, Vestn. RUDN. Ser. matem., 3:1 (1996), 177–194 | MR | Zbl

[5] Fursikov A. V., Imanuvilov O. Yu., “Local exact boundary controllability of the Boussinesque equations”, SIAM J. Control Optim., 36:2 (1998), 391–421 | DOI | MR | Zbl

[6] Coron J.-M., “On the controllability of 2-D incompressible perfect fluids”, J. Math. Pures Appl. (9), 75:2 (1996), 155–188 | MR | Zbl

[7] Glass O., “Controlabilite exacte frontiere de l'équation d'Euler des fluides parfaits incompressiles en dimension 3”, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 987–992 | MR | Zbl

[8] Coron J.-M., “On the controllability of the 2-D incompressible Navier–Stokes equations with the Navier slip boundary conditions”, ESAIM Control Optim. Calc. Var., 1 (1996), 35–75 | DOI | MR | Zbl

[9] Coron J.-M., Fursikov A. V., “Global exact controllability of the 2-D Navier–Stokes equations on manifold without boundary”, Russian J. Math. Phys., 4:3 (1996), 1–20 | MR

[10] Fursikov A. V., Controllability property for the Navier–Stokes equations, Internat. Ser. Numer. Math., 133, Birkhäuser, Basel, 1999 | MR | Zbl

[11] Fursikov A. V., Emanuilov O. Yu., “Tochnaya upravlyaemost uravnenii Nave–Stoksa i Bussineska”, UMN, 54:3 (1999), 565–618 | MR | Zbl

[12] Slobodetskii L. N., “Obobschennye prostranstva Soboleva i ikh prilozheniya k granichnym zadacham dlya uravnenii s chastnymi proizvodnymi”, Uch. zapiski Len. ped. inst. im. A. I. Gertsena, 197 (1958), 54–112 | MR | Zbl

[13] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR

[14] Serëgin G., Sverak V., “Sistemy Nave–Stoksa i edinstvennost v obratnom napravlenii vremeni”, Nelineinye zadachi matematicheskoi fiziki i smezhnye voprosy. T. 2, V chest O. A. Ladyzhenskoi, Tamara Rozhkovskaya, Novosibirsk, 2002, 321–332

[15] Temam R., Uravneniya Nave–Stoksa, Mir, M., 1981 | MR | Zbl

[16] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, N., 1999

[17] Dubinskii Yu. A., “Slabaya skhodimost v nelineinykh ellipticheskikh i parabolicheskikh uravneniyakh”, Matem. sb., 67:4 (1965), 609–642 | MR | Zbl