Piecewise lexsegment ideals
Sbornik. Mathematics, Tome 194 (2003) no. 11, pp. 1701-1724 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of describing the Hilbert functions of homogeneous ideals of a commutative polynomial ring containing a fixed monomial ideal $I$ is considered. For this purpose the notion of a piecewise lexsegment ideal is introduced generalizing the notion of a lexsegment ideal. It is proved that if $I$ is a piecewise lexsegment ideal, then it is possible to describe the Hilbert functions of homogeneous ideals containing $I$ in a way similar to that suggested by Macaulay for the situation $I=0$. Moreover, a generalization of extremal properties of lexsegment ideals is obtained (the inequality for the Betti numbers, behaviour under factorization by homogeneous generic forms).
@article{SM_2003_194_11_a5,
     author = {D. A. Shakin},
     title = {Piecewise lexsegment ideals},
     journal = {Sbornik. Mathematics},
     pages = {1701--1724},
     year = {2003},
     volume = {194},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_11_a5/}
}
TY  - JOUR
AU  - D. A. Shakin
TI  - Piecewise lexsegment ideals
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1701
EP  - 1724
VL  - 194
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_11_a5/
LA  - en
ID  - SM_2003_194_11_a5
ER  - 
%0 Journal Article
%A D. A. Shakin
%T Piecewise lexsegment ideals
%J Sbornik. Mathematics
%D 2003
%P 1701-1724
%V 194
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2003_194_11_a5/
%G en
%F SM_2003_194_11_a5
D. A. Shakin. Piecewise lexsegment ideals. Sbornik. Mathematics, Tome 194 (2003) no. 11, pp. 1701-1724. http://geodesic.mathdoc.fr/item/SM_2003_194_11_a5/

[1] Macaulay F. S., “Some properties of enumeration in the theory of modular systems”, Proc. London Math. Soc. (2), 26 (1927), 531–555 | DOI | Zbl

[2] Bigatti A. M., “Upper bounds for the Betti numbers of a given Hilbert function”, Comm. Algebra, 21 (1993), 2317–2334 | DOI | MR | Zbl

[3] Hulett H., “Maximum Betti numbers of homogeneous ideals with agiven Hilbert function”, Comm. Algebra, 21 (1993), 2335–2350 | DOI | MR | Zbl

[4] Green M., “Restrictions of linear series to hyperplanes, and some results of Macaulay and Gotzmann”, Algebraic curves and projective geometry, Lecture Notes in Math., 1389, eds. E. Ballico, C. Ciliberto, Springer-Verlag, New York, 1989, 76–86 | MR

[5] Herzog J., Popescu D., “Hilbert functions and homogeneous generic forms”, Compositio Math., 113:1 (1998), 1–22 | DOI | MR | Zbl

[6] Clements G., Lindström B., “A generalization of a combinatorial theorem of Macaulay”, J. Combin. Theory, 7 (1969), 230–238 | DOI | MR | Zbl

[7] Aramova A., Herzog J., Hibi T., “Squarefree lexsegment ideals”, Math. Z., 228 (1998), 353–378 | DOI | MR | Zbl

[8] Gasharov V., “Green and Gotzmann theorems for polynomial rings with restricted powers of the variables”, J. Pure Appl. Algebra, 130:2 (1998), 113–118 | DOI | MR | Zbl

[9] Shakin D. A., “O nekotorykh obobscheniyakh kombinatornoi teoremy Makoleya na sluchai faktorkolets”, Matem. sb., 192:9 (2001), 143–160 | MR | Zbl

[10] Gotzmann G., “Eine Bedingung für die Flachheit und das Hilbertpolynom eines graduierten Ringes”, Math. Z., 158 (1978), 61–70 | DOI | MR | Zbl

[11] Gasharov V., “Extremal properties of Hilbert functions”, Illinois J. Math., 41:4 (1997), 612–629 | MR | Zbl

[12] Eliahou S., Kervaire M., “Minimal resolutions of some monomial ideals”, J. Algebra, 129 (1990), 1–25 | DOI | MR | Zbl

[13] Eisenbud D., Commutative algebra with a view toward algebraic geometry, Springer-Verlag, New York, 1995 | MR | Zbl

[14] Herzog J., Hibi T., “Componentwise linear ideals”, Nagoya Math. J., 153 (1999), 141–153 | MR | Zbl

[15] Aramova A., Herzog J., Hibi T., “Ideals with stable Betti numbers”, Adv. Math., 152 (2000), 72–77 | DOI | MR | Zbl

[16] Iyengar S., Pardue K., “Maximal minimal resolutions”, J. Reine Angew. Math., 512 (1999), 27–48 | MR | Zbl

[17] Gasharov V., “Hilbert functions and homogeneous generic forms. II”, Compositio Math., 116 (1999), 167–172 | DOI | MR | Zbl