Piecewise lexsegment ideals
Sbornik. Mathematics, Tome 194 (2003) no. 11, pp. 1701-1724

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of describing the Hilbert functions of homogeneous ideals of a commutative polynomial ring containing a fixed monomial ideal $I$ is considered. For this purpose the notion of a piecewise lexsegment ideal is introduced generalizing the notion of a lexsegment ideal. It is proved that if $I$ is a piecewise lexsegment ideal, then it is possible to describe the Hilbert functions of homogeneous ideals containing $I$ in a way similar to that suggested by Macaulay for the situation $I=0$. Moreover, a generalization of extremal properties of lexsegment ideals is obtained (the inequality for the Betti numbers, behaviour under factorization by homogeneous generic forms).
@article{SM_2003_194_11_a5,
     author = {D. A. Shakin},
     title = {Piecewise lexsegment ideals},
     journal = {Sbornik. Mathematics},
     pages = {1701--1724},
     publisher = {mathdoc},
     volume = {194},
     number = {11},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_11_a5/}
}
TY  - JOUR
AU  - D. A. Shakin
TI  - Piecewise lexsegment ideals
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1701
EP  - 1724
VL  - 194
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_11_a5/
LA  - en
ID  - SM_2003_194_11_a5
ER  - 
%0 Journal Article
%A D. A. Shakin
%T Piecewise lexsegment ideals
%J Sbornik. Mathematics
%D 2003
%P 1701-1724
%V 194
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2003_194_11_a5/
%G en
%F SM_2003_194_11_a5
D. A. Shakin. Piecewise lexsegment ideals. Sbornik. Mathematics, Tome 194 (2003) no. 11, pp. 1701-1724. http://geodesic.mathdoc.fr/item/SM_2003_194_11_a5/