@article{SM_2003_194_11_a4,
author = {I. A. Cheltsov},
title = {Non-rationality of the~ 4-dimensional smooth complete intersection of},
journal = {Sbornik. Mathematics},
pages = {1679--1699},
year = {2003},
volume = {194},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2003_194_11_a4/}
}
I. A. Cheltsov. Non-rationality of the 4-dimensional smooth complete intersection of. Sbornik. Mathematics, Tome 194 (2003) no. 11, pp. 1679-1699. http://geodesic.mathdoc.fr/item/SM_2003_194_11_a4/
[1] Pukhlikov A. V., “Birationally rigid Fano complete intersections”, J. Reine Angew. Math., 541 (2001), 55–79 | MR | Zbl
[2] Iskovskikh V. A., Manin Yu. I., “Trekhmernye kvartiki i kontrprimery k probleme Lyurota”, Matem. sb., 86 (128):1 (1971), 140–166 | MR | Zbl
[3] Pukhlikov A. V., “Birational automorphisms of Fano hypersurfaces”, Invent. Math., 134 (1998), 401–426 | DOI | MR | Zbl
[4] Pukhlikov A. V., “Birational automorphisms of four-dimensional quintic”, Invent. Math., 87 (1987), 303–329 | DOI | MR | Zbl
[5] Cheltsov I. A., “O gladkoi chetyrekhmernoi kvintike”, Matem. sb., 191:9 (2000), 139–162 | MR
[6] Pukhlikov A. V., “Biratsionalno zhestkie giperpoverkhnosti Fano”, Izv. RAN. Ser. matem., 66:6 (2002), 159–186 | MR | Zbl
[7] Ein L., de Fernex T., Mustata M., “Bounds for log canonical thresholds with applications to birational rigidity”, Math. Res. Lett., 10:2–3 (2003), 219–236 | MR | Zbl
[8] Bogomolov F., Tschinkel Yu., “On the density of rational points on elliptic fibrations”, J. Reine Angew. Math., 511 (1999), 87–93 | MR | Zbl
[9] Harris J., Tschinkel Yu., “Rational points on quartics”, Duke Math. J., 104 (2000), 477–500 | DOI | MR | Zbl
[10] Cheltsov I., “Log pairs on birationally rigid varieties”, J. Math. Sci. (New York), 102 (2000), 3843–3875 | DOI | MR | Zbl
[11] Cheltsov I. A., “Log pary na giperpoverkhnostyakh stepeni $N$ v $\mathbb P^N$”, Matem. zametki, 68:1 (2000), 113–119 | MR | Zbl
[12] Cheltsov I. A., “Mnogoobrazie Fano s edinstvennoi ellipticheskoi strukturoi”, Matem. sb., 192:5 (2001), 785–156 | MR | Zbl
[13] Cheltsov I. A., “Antikanonicheskie modeli trekhmernykh mnogoobrazii Fano stepeni chetyre”, Matem. sb., 194:4 (2003), 147–172 | MR | Zbl
[14] Ryder D., Elliptic and K3 fibrations birational to Fano 3-fold weighted hypersurfaces, Thesis, Univ. Warwick, Warwick, 2002 | Zbl
[15] Alexeev V., “General elephants of $\mathbb Q$-Fano 3-folds”, Compositio Math., 91 (1994), 91–116 | MR | Zbl
[16] Kawamata Y., Matsuda K., Matsuki K., “Introduction to the minimal model problem”, Adv. Stud. Pure Math., 10 (1987), 283–360 | MR | Zbl
[17] “Flips and abundance for algebraic threefolds”, A summer seminar at the Utah (Salt Lake City, 1991), Astérisque, 211, ed. Kollár J. et al., 1992 | MR
[18] Corti A., “Singularities of linear systems and 3-fold birational geometry”, Explicit birational geometry of 3-folds, London Math. Soc. Lectute Note Ser., 281, eds. A. Corti et al., Cambridge Univ. Press, Cambridge, 2000, 259–312 | MR | Zbl
[19] Pukhlikov A., “Essentials of the method of maximal singularities”, Explicit birational geometry of 3-folds, London Math. Soc. Lectute Note Ser., 281, eds. A. Corti et al., Cambridge Univ. Press, Cambridge, 2000, 73–100 | MR | Zbl
[20] Reid M., “Chapters on algebraic surfaces”, Complex algebraic geometry, Lecture of a summer program (Park City, Utah, 1993), ed. J. Kollár, Amer. Math. Soc., Providence, RI, 1997, 5–159 | MR | Zbl
[21] Pukhlikov A. V., “Zamechanie o teoreme V. A. Iskovskikh i Yu. I. Manina o trekhmernoi kvartike”, Trudy MIAN, 208, 1995, 278–289 | MR | Zbl
[22] Corti A., “Factorizing birational maps of threefolds after Sarkisov”, J. Algebraic Geom., 4 (1995), 223–254 | MR | Zbl
[23] Ishii Sh., “A characterization of hyperplane cuts of a smooth complete intersection”, Proc. Japan Acad. Ser. A Math. Sci., 58 (1982), 309–311 | DOI | MR | Zbl
[24] Artin M., “On isolated rational singularities of surfaces”, Amer. J. Math., 88 (1966), 129–136 | DOI | MR | Zbl