@article{SM_2003_194_11_a3,
author = {D. V. Osipov},
title = {The infinite-dimensional {Sato} {Grassmannian} and coherent sheaves of rank~2 on curves},
journal = {Sbornik. Mathematics},
pages = {1665--1678},
year = {2003},
volume = {194},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2003_194_11_a3/}
}
D. V. Osipov. The infinite-dimensional Sato Grassmannian and coherent sheaves of rank 2 on curves. Sbornik. Mathematics, Tome 194 (2003) no. 11, pp. 1665-1678. http://geodesic.mathdoc.fr/item/SM_2003_194_11_a3/
[1] Mulase M., “Category of vector bundles on algebraic curves and infinite dimensional grassmanians”, Internat. J. Math., 1:3 (1990), 293–342 | DOI | MR | Zbl
[2] Previato E., Wilson G., “Vector bundles over curves and solutions of the KP equations”, Proc. Sympos. Pure Math., 49 (1989), 553–569 | MR | Zbl
[3] Osipov D. V., “Otobrazhenie Krichevera i (polu)stabilnye puchki na krivykh”, UMN, 54:3 (1999), 177–178 | MR | Zbl
[4] Álvarez Vázquez A., Munoz Porras J. M., Plaza Martín F. J., “The algebraic formalism of soliton equations over arbitrary base fields”, Workshop on abelian varieties and theta functions, Proceedings (Morelia, México, July 8–27, 1996), Aportaciones Mat. Invest., 13, eds. R. Rodriguez et al., Soc. Mat. Mexicana, México, 1998, 3–40 | MR | Zbl
[5] Pressli E., Sigal G., Gruppy petel, Mir, M., 1990 | MR
[6] Newstead P. E., Lectures on introduction to moduli problems and orbit spaces, Tata Inst. Fund. Res. Lect. Math. and Phys. Math., 51, Springer-Verlag, Berlin, 1978 | MR | Zbl
[7] Kac V. G., Peterson D. H., “Lectures on the infinite wedge-representation and the MKP hierarchy”, Systèms dynaniques non linéares: intégrabilité et comportement qualitatif, Sémin. Math. Supér., Sémin. Sci. OTAN, NATO Adv. Study Inst., 102, 1986, 141–183 | MR | Zbl
[8] Kac V. G., Raina A. K., Bombay lectures on highest weight representations, World Sci., Singapore, 1987