On the equation of an~improper convex affine sphere:
Sbornik. Mathematics, Tome 194 (2003) no. 11, pp. 1647-1663
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that if a function $\varphi(t)$ of variable $t>0$ belongs to the class
$C^{3,\alpha}$ and satisfies for sufficiently small positive $\varepsilon$
($\varepsilon10^{-4}$) the conditions
\begin{gather*}
1-\varepsilon\leqslant\varphi(t)\leqslant1+\varepsilon,\qquad t>0,
\\
\begin{alignedat}{2}
|\varphi'(t)|\leqslant\varepsilon\frac{\varphi(t)}t\,,\qquad
t\geqslant 2\sqrt{1-\varepsilon},
\\
|\varphi''(t)|\leqslant\varepsilon\frac{\varphi(t)}{t^2}\,,\qquad
t\geqslant2\sqrt{1-\varepsilon},
\\
|\varphi'''(t)|\leqslant\varepsilon\frac{\varphi(t)}{t^3}\,,\qquad
t\geqslant2\sqrt{1-\varepsilon},
\end{alignedat}
\end{gather*}
then every complete solution $z(x,y)$ of the equation $z_{xx}z_{yy}-z_{xy}^2=\varphi(z_{xx}+z_{yy})$
is a quadratic polynomial.
@article{SM_2003_194_11_a2,
author = {V. N. Kokarev},
title = {On the equation of an~improper convex affine sphere:},
journal = {Sbornik. Mathematics},
pages = {1647--1663},
publisher = {mathdoc},
volume = {194},
number = {11},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2003_194_11_a2/}
}
V. N. Kokarev. On the equation of an~improper convex affine sphere:. Sbornik. Mathematics, Tome 194 (2003) no. 11, pp. 1647-1663. http://geodesic.mathdoc.fr/item/SM_2003_194_11_a2/