On the equation of an improper convex affine sphere:
Sbornik. Mathematics, Tome 194 (2003) no. 11, pp. 1647-1663 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that if a function $\varphi(t)$ of variable $t>0$ belongs to the class $C^{3,\alpha}$ and satisfies for sufficiently small positive $\varepsilon$ ($\varepsilon<10^{-4}$) the conditions \begin{gather*} 1-\varepsilon\leqslant\varphi(t)\leqslant1+\varepsilon,\qquad t>0, \\ \begin{alignedat}{2} |\varphi'(t)|&\leqslant\varepsilon\frac{\varphi(t)}t\,,&\qquad t&\geqslant 2\sqrt{1-\varepsilon}, \\ |\varphi''(t)|&\leqslant\varepsilon\frac{\varphi(t)}{t^2}\,,&\qquad t&\geqslant2\sqrt{1-\varepsilon}, \\ |\varphi'''(t)|&\leqslant\varepsilon\frac{\varphi(t)}{t^3}\,,&\qquad t&\geqslant2\sqrt{1-\varepsilon}, \end{alignedat} \end{gather*} then every complete solution $z(x,y)$ of the equation $z_{xx}z_{yy}-z_{xy}^2=\varphi(z_{xx}+z_{yy})$ is a quadratic polynomial.
@article{SM_2003_194_11_a2,
     author = {V. N. Kokarev},
     title = {On the equation of an~improper convex affine sphere:},
     journal = {Sbornik. Mathematics},
     pages = {1647--1663},
     year = {2003},
     volume = {194},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_11_a2/}
}
TY  - JOUR
AU  - V. N. Kokarev
TI  - On the equation of an improper convex affine sphere:
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1647
EP  - 1663
VL  - 194
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_11_a2/
LA  - en
ID  - SM_2003_194_11_a2
ER  - 
%0 Journal Article
%A V. N. Kokarev
%T On the equation of an improper convex affine sphere:
%J Sbornik. Mathematics
%D 2003
%P 1647-1663
%V 194
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2003_194_11_a2/
%G en
%F SM_2003_194_11_a2
V. N. Kokarev. On the equation of an improper convex affine sphere:. Sbornik. Mathematics, Tome 194 (2003) no. 11, pp. 1647-1663. http://geodesic.mathdoc.fr/item/SM_2003_194_11_a2/

[1] Jörgens K., “Über die Lösungen der Differentialgleichung $rt-s^2=1$”, Math. Ann., 127 (1954), 130–134 | DOI | MR | Zbl

[2] Calabi E., “Improper affine hyperspheres of convex type and a generalizations of a theorem by K. Jörgens”, Michigan Math. J., 5:2 (1958), 105–126 | DOI | MR | Zbl

[3] Pogorelov A. V., Mnogomernaya problema Minkovskogo, Nauka, M., 1975 | MR | Zbl

[4] Caffarelli L., Nirenberg L., Spruck J., “The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian”, Acta Math., 155:3, 4 (1985), 261–301 | DOI | MR | Zbl

[5] Pogorelov A. V., Mnogomernoe uravnenie Monzha–Ampera $\det(z_{ij})=\varphi(z_1,\dots,z_n,z,x_1,\dots,x_n)$, Nauka, M., 1988

[6] Kokarev V. N., “O polnykh vypuklykh resheniyakh uravneniya $\operatorname{spur}_m(z_{ij})=1$”, Matem. fizika, analiz, geom., 3:1/2 (1996), 102–117 | MR | Zbl

[7] Calabi E., “An extension of E. Hopf's maximum principle with an application to Riemannian geometry”, Duke Match. J., 25 (1958), 45–56 | DOI | MR | Zbl

[8] Agmon S., Duglis A., Nirenberg L., Otsenki vblizi granitsy reshenii ellipticheskikh uravnenii v chastnykh proizvodnykh pri obschikh granichnykh usloviyakh, t. 1, IL, M., 1962