@article{SM_2003_194_11_a2,
author = {V. N. Kokarev},
title = {On the equation of an~improper convex affine sphere:},
journal = {Sbornik. Mathematics},
pages = {1647--1663},
year = {2003},
volume = {194},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2003_194_11_a2/}
}
V. N. Kokarev. On the equation of an improper convex affine sphere:. Sbornik. Mathematics, Tome 194 (2003) no. 11, pp. 1647-1663. http://geodesic.mathdoc.fr/item/SM_2003_194_11_a2/
[1] Jörgens K., “Über die Lösungen der Differentialgleichung $rt-s^2=1$”, Math. Ann., 127 (1954), 130–134 | DOI | MR | Zbl
[2] Calabi E., “Improper affine hyperspheres of convex type and a generalizations of a theorem by K. Jörgens”, Michigan Math. J., 5:2 (1958), 105–126 | DOI | MR | Zbl
[3] Pogorelov A. V., Mnogomernaya problema Minkovskogo, Nauka, M., 1975 | MR | Zbl
[4] Caffarelli L., Nirenberg L., Spruck J., “The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian”, Acta Math., 155:3, 4 (1985), 261–301 | DOI | MR | Zbl
[5] Pogorelov A. V., Mnogomernoe uravnenie Monzha–Ampera $\det(z_{ij})=\varphi(z_1,\dots,z_n,z,x_1,\dots,x_n)$, Nauka, M., 1988
[6] Kokarev V. N., “O polnykh vypuklykh resheniyakh uravneniya $\operatorname{spur}_m(z_{ij})=1$”, Matem. fizika, analiz, geom., 3:1/2 (1996), 102–117 | MR | Zbl
[7] Calabi E., “An extension of E. Hopf's maximum principle with an application to Riemannian geometry”, Duke Match. J., 25 (1958), 45–56 | DOI | MR | Zbl
[8] Agmon S., Duglis A., Nirenberg L., Otsenki vblizi granitsy reshenii ellipticheskikh uravnenii v chastnykh proizvodnykh pri obschikh granichnykh usloviyakh, t. 1, IL, M., 1962