On the equation of an~improper convex affine sphere:
Sbornik. Mathematics, Tome 194 (2003) no. 11, pp. 1647-1663

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if a function $\varphi(t)$ of variable $t>0$ belongs to the class $C^{3,\alpha}$ and satisfies for sufficiently small positive $\varepsilon$ ($\varepsilon10^{-4}$) the conditions \begin{gather*} 1-\varepsilon\leqslant\varphi(t)\leqslant1+\varepsilon,\qquad t>0, \\ \begin{alignedat}{2} |\varphi'(t)|\leqslant\varepsilon\frac{\varphi(t)}t\,,\qquad t\geqslant 2\sqrt{1-\varepsilon}, \\ |\varphi''(t)|\leqslant\varepsilon\frac{\varphi(t)}{t^2}\,,\qquad t\geqslant2\sqrt{1-\varepsilon}, \\ |\varphi'''(t)|\leqslant\varepsilon\frac{\varphi(t)}{t^3}\,,\qquad t\geqslant2\sqrt{1-\varepsilon}, \end{alignedat} \end{gather*} then every complete solution $z(x,y)$ of the equation $z_{xx}z_{yy}-z_{xy}^2=\varphi(z_{xx}+z_{yy})$ is a quadratic polynomial.
@article{SM_2003_194_11_a2,
     author = {V. N. Kokarev},
     title = {On the equation of an~improper convex affine sphere:},
     journal = {Sbornik. Mathematics},
     pages = {1647--1663},
     publisher = {mathdoc},
     volume = {194},
     number = {11},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_11_a2/}
}
TY  - JOUR
AU  - V. N. Kokarev
TI  - On the equation of an~improper convex affine sphere:
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1647
EP  - 1663
VL  - 194
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_11_a2/
LA  - en
ID  - SM_2003_194_11_a2
ER  - 
%0 Journal Article
%A V. N. Kokarev
%T On the equation of an~improper convex affine sphere:
%J Sbornik. Mathematics
%D 2003
%P 1647-1663
%V 194
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2003_194_11_a2/
%G en
%F SM_2003_194_11_a2
V. N. Kokarev. On the equation of an~improper convex affine sphere:. Sbornik. Mathematics, Tome 194 (2003) no. 11, pp. 1647-1663. http://geodesic.mathdoc.fr/item/SM_2003_194_11_a2/