@article{SM_2003_194_11_a0,
author = {Yu. A. Brailov},
title = {Geometry of translations of invariants on semisimple {Lie} algebras},
journal = {Sbornik. Mathematics},
pages = {1585--1598},
year = {2003},
volume = {194},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2003_194_11_a0/}
}
Yu. A. Brailov. Geometry of translations of invariants on semisimple Lie algebras. Sbornik. Mathematics, Tome 194 (2003) no. 11, pp. 1585-1598. http://geodesic.mathdoc.fr/item/SM_2003_194_11_a0/
[1] Mischenko A. S., Fomenko A. T., “Integriruemost uravnenii Eilera na poluprostykh algebrakh Li”, Trudy seminara po vektornomu i tenzornomu analizu, 19, Izd-vo MGU, M., 1979, 3–94
[2] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1979 | MR | Zbl
[3] Mischenko A. S., Fomenko A. T., “Ob integriruemosti uravnenii Eilera na poluprostykh algebrakh Li”, Dokl. AN SSSR, 231:3 (1976), 536–538 | MR | Zbl
[4] Mischenko A. S., Fomenko A. T., “Uravneniya Eilera na konechnomernykh gruppakh Li”, Izv. AN SSSR. Ser. matem., 42:2 (1978), 396–415 | MR | Zbl
[5] Brailov Yu. A., Fomenko A. T., “Lie groups and integrable Hamiltonian systems”, Recent advances in Lie theory. Selected contributions to the 1st colloquium on Lie theory and applications (Vido, Spain, July 17–22, 2000), eds. I. Bajo et al., Heldermann, Lemgo, 2002, 45–76 | MR | Zbl
[6] Kharlamov M. P., “Topologicheskii analiz klassicheskikh integriruemykh sluchaev dinamiki tverdogo tela”, Dokl. AN SSSR, 273:6 (1983), 1322–1325 | MR | Zbl
[7] Brailov Yu. A., “Topologiya bifurkatsionnykh diagramm integriruemykh sistem na poluprostykh algebrakh Li”, Dokl. RAN, 375:2 (2000), 151–153 | MR | Zbl
[8] Bolsinov A. V., “Kriterii polnoty semeistva funktsii v involyutsii, postroennogo metodom sdviga argumenta”, Dokl. AN SSSR, 301:5 (1988), 1037–1040 | MR
[9] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, Udmurtskii universitet, Izhevsk, 1999 | MR