Geometry of translations of invariants on semisimple Lie algebras
Sbornik. Mathematics, Tome 194 (2003) no. 11, pp. 1585-1598 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Each orbit of the coadjoint representation of a semisimple Lie algebra can be equipped with a complete commutative family of polynomials; this family was obtained by the argument-translation method in papers of Mishchenko and Fomenko. This commutative family and the corresponding Euler's equations play an important role in the theory of finite-dimensional integrable systems. These Euler's equations admit a natural Lax representation with spectral parameter. It is proved in the paper that the discriminant of the spectral curve coincides completely with the bifurcation diagram of the moment map for the algebra $\mathrm{sl}(n,\mathbb C)$. The maximal degeneracy points of the moment map are described for compact semisimple Lie algebras in terms of the root structure. It is also proved that the set of regular points of the moment map is connected, and the inverse image of each regular point consists of precisely one Liouville torus.
@article{SM_2003_194_11_a0,
     author = {Yu. A. Brailov},
     title = {Geometry of translations of invariants on semisimple {Lie} algebras},
     journal = {Sbornik. Mathematics},
     pages = {1585--1598},
     year = {2003},
     volume = {194},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_11_a0/}
}
TY  - JOUR
AU  - Yu. A. Brailov
TI  - Geometry of translations of invariants on semisimple Lie algebras
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1585
EP  - 1598
VL  - 194
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_11_a0/
LA  - en
ID  - SM_2003_194_11_a0
ER  - 
%0 Journal Article
%A Yu. A. Brailov
%T Geometry of translations of invariants on semisimple Lie algebras
%J Sbornik. Mathematics
%D 2003
%P 1585-1598
%V 194
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2003_194_11_a0/
%G en
%F SM_2003_194_11_a0
Yu. A. Brailov. Geometry of translations of invariants on semisimple Lie algebras. Sbornik. Mathematics, Tome 194 (2003) no. 11, pp. 1585-1598. http://geodesic.mathdoc.fr/item/SM_2003_194_11_a0/

[1] Mischenko A. S., Fomenko A. T., “Integriruemost uravnenii Eilera na poluprostykh algebrakh Li”, Trudy seminara po vektornomu i tenzornomu analizu, 19, Izd-vo MGU, M., 1979, 3–94

[2] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1979 | MR | Zbl

[3] Mischenko A. S., Fomenko A. T., “Ob integriruemosti uravnenii Eilera na poluprostykh algebrakh Li”, Dokl. AN SSSR, 231:3 (1976), 536–538 | MR | Zbl

[4] Mischenko A. S., Fomenko A. T., “Uravneniya Eilera na konechnomernykh gruppakh Li”, Izv. AN SSSR. Ser. matem., 42:2 (1978), 396–415 | MR | Zbl

[5] Brailov Yu. A., Fomenko A. T., “Lie groups and integrable Hamiltonian systems”, Recent advances in Lie theory. Selected contributions to the 1st colloquium on Lie theory and applications (Vido, Spain, July 17–22, 2000), eds. I. Bajo et al., Heldermann, Lemgo, 2002, 45–76 | MR | Zbl

[6] Kharlamov M. P., “Topologicheskii analiz klassicheskikh integriruemykh sluchaev dinamiki tverdogo tela”, Dokl. AN SSSR, 273:6 (1983), 1322–1325 | MR | Zbl

[7] Brailov Yu. A., “Topologiya bifurkatsionnykh diagramm integriruemykh sistem na poluprostykh algebrakh Li”, Dokl. RAN, 375:2 (2000), 151–153 | MR | Zbl

[8] Bolsinov A. V., “Kriterii polnoty semeistva funktsii v involyutsii, postroennogo metodom sdviga argumenta”, Dokl. AN SSSR, 301:5 (1988), 1037–1040 | MR

[9] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, Udmurtskii universitet, Izhevsk, 1999 | MR