Geometry of translations of invariants on semisimple Lie algebras
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 194 (2003) no. 11, pp. 1585-1598
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Each orbit of the coadjoint representation of a semisimple Lie algebra can be equipped 
with a complete commutative family of polynomials; this family was
obtained by the argument-translation method in  papers
of Mishchenko and Fomenko. This commutative family and the corresponding Euler's equations play an important role in the theory of finite-dimensional integrable systems. These Euler's equations admit a natural Lax representation with  spectral parameter.
It is proved in the paper  that the discriminant of the spectral
curve coincides completely  with the bifurcation diagram of the moment map for the algebra $\mathrm{sl}(n,\mathbb C)$. The maximal degeneracy points of the moment map are described for compact semisimple Lie algebras in terms of the root structure. It is also
proved that the set of regular points of the moment map is connected, and the inverse image of each regular point consists of precisely one Liouville torus.
			
            
            
            
          
        
      @article{SM_2003_194_11_a0,
     author = {Yu. A. Brailov},
     title = {Geometry of translations of invariants on semisimple {Lie} algebras},
     journal = {Sbornik. Mathematics},
     pages = {1585--1598},
     publisher = {mathdoc},
     volume = {194},
     number = {11},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_11_a0/}
}
                      
                      
                    Yu. A. Brailov. Geometry of translations of invariants on semisimple Lie algebras. Sbornik. Mathematics, Tome 194 (2003) no. 11, pp. 1585-1598. http://geodesic.mathdoc.fr/item/SM_2003_194_11_a0/
