Quadrature formulae for classes of functions of low smoothness
Sbornik. Mathematics, Tome 194 (2003) no. 10, pp. 1559-1584 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For Sobolev and Korobov spaces of functions of several variables a quadrature formula with explicitly defined coefficients and nodes is constructed. This formula is precise for trigonometric polynomials with harmonics from the corresponding step hyperbolic cross. The error of the quadrature formula in the classes $W^\alpha_p[0,1]^n$, $E^\alpha[0,1]^n$ is $o((\ln M)^\beta/M^\alpha)$, where $M$ is the number of nodes and $\beta$ is a parameter depending on the class. The problem of the approximate calculation of multiple integrals for functions in $W^\alpha_p[0,1]^n$ is considered in the case when this class does not lie in the space of continuous functions, that is, for $\alpha\leqslant 1/p$.
@article{SM_2003_194_10_a6,
     author = {E. D. Nursultanov and N. T. Tleukhanova},
     title = {Quadrature formulae for classes of functions of low smoothness},
     journal = {Sbornik. Mathematics},
     pages = {1559--1584},
     year = {2003},
     volume = {194},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_10_a6/}
}
TY  - JOUR
AU  - E. D. Nursultanov
AU  - N. T. Tleukhanova
TI  - Quadrature formulae for classes of functions of low smoothness
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1559
EP  - 1584
VL  - 194
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_10_a6/
LA  - en
ID  - SM_2003_194_10_a6
ER  - 
%0 Journal Article
%A E. D. Nursultanov
%A N. T. Tleukhanova
%T Quadrature formulae for classes of functions of low smoothness
%J Sbornik. Mathematics
%D 2003
%P 1559-1584
%V 194
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2003_194_10_a6/
%G en
%F SM_2003_194_10_a6
E. D. Nursultanov; N. T. Tleukhanova. Quadrature formulae for classes of functions of low smoothness. Sbornik. Mathematics, Tome 194 (2003) no. 10, pp. 1559-1584. http://geodesic.mathdoc.fr/item/SM_2003_194_10_a6/

[1] Korobov N. M., Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963 | MR

[2] Hlawka E., “Zur angendherten Berechnung mehrfacher Integrale”, Monatsh. Math., 66 (1962), 140–151 | DOI | MR | Zbl

[3] Bakhvalov N. S., “O priblizhennom vychislenii kratnykh integralov”, Vestn. MGU. Ser. 1. Matem., mekh., 1959, no. 4, 3–18 | MR

[4] Babenko K. I., Osnovy chislennogo analiza, Nauka, M., 1986 | MR

[5] Frolov K. K., “Otsenki sverkhu pogreshnosti kvadraturnykh formul na klassakh funktsii”, Dokl. AN SSSR, 231:4 (1976), 818–821 | MR | Zbl

[6] Wang Y., “Number theoretic method in numerical analysis”, Contemp. Math., 77 (1988), 63–82 | MR | Zbl

[7] Temirgaliev N. T., “Teoretiko-chislovye metody i teoretiko-veroyatnostnyi podkhod k zadacham analiza, teoriya vlozhenii i priblizhenii, absolyutnaya skhodimost i preobrazovaniya ryadov Fure”, Vestn. Evraziiskogo un-ta, 1997, no. 3, 86–140 | MR

[8] Temirgaliev N. T., “Ob effektivnosti algoritmov chislennogo integrirovaniya, svyazannykh s teoriei divizorov v krugovykh polyakh”, Matem. zametki, 61:2 (1997), 297–301 | MR | Zbl

[9] Voronin S. M., Temirgaliev N. T., “O kvadraturnykh formulakh, svyazannykh s divizorami polya gaussovykh chisel”, Matem. zametki, 46:2 (1989), 34–41 | MR | Zbl

[10] Temlyakov V. N., “O vosstanovlenii periodicheskikh funktsii neskolkikh peremennykh po znacheniyam v uzlakh teoretiko-chislovykh setok”, Anal. Math., 12:4 (1986), 287–305 | DOI | MR | Zbl

[11] Temlyakov V. N., “Ob odnom prieme polucheniya otsenok snizu pogreshnostei kvadraturnykh formul”, Matem. sb., 181:10 (1990), 1403–1413 | Zbl

[12] Bykovskii V. A., “Otsenki otklonenii optimalnykh setok v $L_p$-norme i teoriya kvadraturnykh formul”, Anal. Math., 22 (1996), 81–97 | DOI | MR | Zbl

[13] Frolov K. K., Kvadraturnye formuly na klassakh funktsii, Dis. ... kand. fiz.-matem. nauk, VTs AN SSSR, 1979

[14] Skriganov M. M., “Construction of uniform distributions in terms of geometry of numbers”, St. Petersbg. Math. J., 6:3 (1995), 635–664 | MR

[15] Smolyak S. A., “Kvadraturnye i interpolyatsionnye formuly na tenzornykh proizvedeniyakh nekotorykh klassov funktsii”, Dokl. AN SSSR, 148:5 (1963), 1042–1045 | MR | Zbl

[16] Temlyakov V. N., “Priblizhennoe vosstanovlenie periodicheskikh funktsii neskolkikh peremennykh”, Matem. sb., 128:2 (1985), 256–268 | MR | Zbl

[17] Temlyakov V. N., “O priblizhennom vosstanovlenii periodicheskikh funktsii neskolkikh peremennykh”, Dokl. AN SSSR, 280:6 (1985), 1310–1313 | MR | Zbl

[18] Blozinski A. P., “Multivariate rearrangements and Banach function spaces with mixed norms”, Trans. Amer. Math. Soc., 263:1 (1981), 149–167 | DOI | MR | Zbl

[19] Nursultanov E. D., “O multiplikatorakh ryadov Fure po trigonometricheskoi sisteme”, Matem. zametki, 63:2 (1998), 235–248 | MR

[20] O'Neil R. O., “Convolution operators and $L_{pq}$ spaces”, Duke Math. J., 30 (1963), 129–142 | DOI | MR | Zbl

[21] Temlyakov V. N., “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Trudy MIAN, 178, 1986, 3–113 | MR | Zbl

[22] Nursultanov E. D., “Interpolation properties of some anisotropic spaces and Hardy–Littlewood type inequalities”, East J. Approx., 4:2 (1998), 277–290 | MR | Zbl

[23] Sharygin I. F., “Otsenki snizu pogreshnosti kvadraturnykh formul na klassakh funktsii”, ZhVM i MF, 3 (1963), 370–376 | MR | Zbl

[24] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[25] Nursultanov E. D., “Interpolyatsionnye svoistva setevykh prostranstv”, Aktualnye voprosy matematiki i metodiki prepodavaniya matematiki, Almaty, 1995, 38–44

[26] Nursultanov E. D., “Setevye prostranstva i neravenstva tipa Khardi–Littlvuda”, Matem. sb., 189:3 (1998), 83–102 | MR | Zbl