A remark on the distribution of the zeros of Riemann's zeta function
Sbornik. Mathematics, Tome 194 (2003) no. 10, pp. 1533-1542
A certain new symmetric representation of Riemann's xi function is considered. A theorem on the zeros of trigonometric integrals analogous to Kakeya's theorem on the zeros of polynomials with monotonically non-decreasing coefficients is used. A modification of Polya's method is suggested, which allows one to obtain new assertions on the disposition of the zeros of the zeta function.
@article{SM_2003_194_10_a4,
author = {A. V. Egorov},
title = {A remark on the~distribution of the~zeros of {Riemann's} zeta function},
journal = {Sbornik. Mathematics},
pages = {1533--1542},
year = {2003},
volume = {194},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2003_194_10_a4/}
}
A. V. Egorov. A remark on the distribution of the zeros of Riemann's zeta function. Sbornik. Mathematics, Tome 194 (2003) no. 10, pp. 1533-1542. http://geodesic.mathdoc.fr/item/SM_2003_194_10_a4/
[1] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, Nauka, M., 1983 | MR
[2] Edwards H. M., Riemann's zeta function, Academic Press, New York, 1974 | MR | Zbl
[3] Kakeya S., “On the limits of the roots of an algebraic equation with positive coefficients”, Tôhoku Math. J., 2:3 (1912)
[4] Pólya G., “Über die Nullstellen gewisser ganzer Funktionen”, Math. Z., 2 (1918), 352–383 | DOI | MR | Zbl