A remark on the distribution of the zeros of Riemann's zeta function
Sbornik. Mathematics, Tome 194 (2003) no. 10, pp. 1533-1542
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A certain new symmetric representation of Riemann's xi function is considered. A theorem on the zeros of trigonometric integrals analogous to Kakeya's theorem on the zeros of polynomials with monotonically non-decreasing coefficients is used. A modification of Polya's method is suggested, which allows one to obtain new assertions on the disposition of the zeros of the zeta function.
@article{SM_2003_194_10_a4,
     author = {A. V. Egorov},
     title = {A remark on the~distribution of the~zeros of {Riemann's} zeta function},
     journal = {Sbornik. Mathematics},
     pages = {1533--1542},
     year = {2003},
     volume = {194},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_10_a4/}
}
TY  - JOUR
AU  - A. V. Egorov
TI  - A remark on the distribution of the zeros of Riemann's zeta function
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1533
EP  - 1542
VL  - 194
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_10_a4/
LA  - en
ID  - SM_2003_194_10_a4
ER  - 
%0 Journal Article
%A A. V. Egorov
%T A remark on the distribution of the zeros of Riemann's zeta function
%J Sbornik. Mathematics
%D 2003
%P 1533-1542
%V 194
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2003_194_10_a4/
%G en
%F SM_2003_194_10_a4
A. V. Egorov. A remark on the distribution of the zeros of Riemann's zeta function. Sbornik. Mathematics, Tome 194 (2003) no. 10, pp. 1533-1542. http://geodesic.mathdoc.fr/item/SM_2003_194_10_a4/

[1] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, Nauka, M., 1983 | MR

[2] Edwards H. M., Riemann's zeta function, Academic Press, New York, 1974 | MR | Zbl

[3] Kakeya S., “On the limits of the roots of an algebraic equation with positive coefficients”, Tôhoku Math. J., 2:3 (1912)

[4] Pólya G., “Über die Nullstellen gewisser ganzer Funktionen”, Math. Z., 2 (1918), 352–383 | DOI | MR | Zbl