On the $L^p_\mu$-strong property of orthonormal systems
Sbornik. Mathematics, Tome 194 (2003) no. 10, pp. 1503-1532 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\{\varphi_n(x)\}$ be a system of bounded functions complete and orthonormal in $L^2_{[0,1]}$ and assume that $\|\varphi_n\|_{p_0}\leqslant\mathrm{const}$, $n\geqslant 1$, for some $p_0>2$. Then the elements of the system can be rearranged so that the resulting system has the $L^p_\mu$-strong property: for each $\varepsilon>0$ there exists a (measurable) subset $E\subset[0,1]$ of measure $|E|>1-\varepsilon$ and a measurable function $\mu(x)$, $0<\mu(x)\leqslant 1$, $\mu(x)=1$ on $E$ such that for all $p>2$ and $f(x)\in L^p_\mu[0,1]$ one can find a function $g(x)\in L^1_{[0,1]}$ coinciding with $f(x)$ on $E$ such that its Fourier series in the system $\{\varphi_{\sigma(k)}(x)\}$ converges to $g(x)$ in the $L^p_\mu[0,1]$-norm and the sequence of Fourier coefficients of this function belongs to all spaces $l^q$, $q>2$.
@article{SM_2003_194_10_a3,
     author = {M. G. Grigoryan},
     title = {On the $L^p_\mu$-strong property of orthonormal systems},
     journal = {Sbornik. Mathematics},
     pages = {1503--1532},
     year = {2003},
     volume = {194},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_10_a3/}
}
TY  - JOUR
AU  - M. G. Grigoryan
TI  - On the $L^p_\mu$-strong property of orthonormal systems
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1503
EP  - 1532
VL  - 194
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_10_a3/
LA  - en
ID  - SM_2003_194_10_a3
ER  - 
%0 Journal Article
%A M. G. Grigoryan
%T On the $L^p_\mu$-strong property of orthonormal systems
%J Sbornik. Mathematics
%D 2003
%P 1503-1532
%V 194
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2003_194_10_a3/
%G en
%F SM_2003_194_10_a3
M. G. Grigoryan. On the $L^p_\mu$-strong property of orthonormal systems. Sbornik. Mathematics, Tome 194 (2003) no. 10, pp. 1503-1532. http://geodesic.mathdoc.fr/item/SM_2003_194_10_a3/

[1] Grigorian M. G., “On the convergence of Fourier series in the metric of $L^1$”, Anal. Math., 17:3 (1991), 211–237 | DOI | MR | Zbl

[2] Grigoryan M. G., “O skhodimosti v metrike $L^1$ i pochti vsyudu ryadov Fure po polnym ortonormirovannym sistemam”, Matem. sb., 181:8 (1990), 1011–1030 | MR | Zbl

[3] Grigoryan M. G., “Skhodimost pochti vsyudu ryadov Fure po polnym ortonormirovannym sistemam”, Matem. zametki, 51:5 (1992), 35–43 | MR | Zbl

[4] Grigoryan M. G., “O nekotorykh svoistvakh ortogonalnykh sistem”, Izv. RAN. Ser. matem., 57:5 (1993), 75–105 | MR | Zbl

[5] Grigorian M. G., “On the representation of functions by orthogonal series in weighted $L^p$ spaces”, Studia Math., 134:3 (1999), 207–216 | MR | Zbl

[6] Grigorian M. G., Kazarian K. S., Soria F., “Mean convergence of orthonormal Fourier series of modified functions”, Trans. Amer. Math. Soc., 352:8 (2000), 3777–3799 | DOI | MR

[7] Luzin N. N., “K osnovnoi teoreme integralnogo ischisleniya”, Matem. sb., 28:2 (1912), 266–294 | MR

[8] Menshov D. E., “O ravnomernoi skhodimosti ryadov Fure”, Matem. sb., 11(53):1–2 (1942), 67–96 | MR | Zbl

[9] Talalyan A. A., “O zavisimosti skhodimosti ortogonalnykh ryadov ot izmeneniya znachenii razlagaemoi funktsii”, Matem. zametki, 33:5 (1983), 715–722 | MR | Zbl

[10] Oskolkov K. I., “Ravnomernyi modul nepreryvnosti summiruemykh funktsii na mnozhestvakh polozhitelnoi mery”, Dokl. AN SSSR, 228:2 (1976), 304–306 | MR

[11] Talalyan A. A., “O ryadakh po sisteme Khaara”, Dokl. AN Arm.SSR, 42:3 (1966), 134–140 | MR

[12] Kashin B. S., Kosheleva G. G., “Ob odnom podkhode k teoremam ob ispravlenii”, Vestn. MGU. Ser. 1. Matem., mekh., 1988, no. 1, 6–8 | MR

[13] Tsereteli O. D., “O skhodimosti pochti vsyudu ryadov Fure”, Soobsch. AN Gruz.SSR, 57:1 (1970), 21–24 | MR | Zbl

[14] Price J. J., “Walsh series and adjustment of functions on small sets”, Illinois J. Math., 13 (1969), 131–136 | MR | Zbl

[15] Osipov R. I., “O skhodimosti ryadov po sisteme Uolsha”, Izv. AN Arm.SSR. Ser. matem., 1:4 (1966), 270–283 | MR | Zbl

[16] Kheladze Sh. V., “Skhodimost ryadov Fure pochti vsyudu i v smysle metriki $L^1$”, Matem. sb., 107:2 (1978), 245–258 | MR | Zbl

[17] Kazaryan K. S., “O nekotorykh voprosakh teorii ortogonalnykh ryadov”, Matem. sb., 119:2 (1982), 278–298 | MR

[18] Kashin B. S., “Ob odnoi polnoi ortonormirovannoi sisteme”, Matem. sb., 99 (1976), 356–365 | MR | Zbl

[19] Gulisashvili A. B., “Perestanovki, rasstanovki znakov i skhodimost posledovatelnostei operatorov”, Zapiski nauchn. sem. LOMI, 107, 1982, 46–70 | MR | Zbl

[20] Gogoladze L. D., Zerekidze T. Sh., “O sopryazhennykh funktsiyakh neskolkikh peremennykh”, Soobsch. AN Gruz.SSR, 94:3 (1979), 541–544 | MR | Zbl

[21] Garsia-Guerva I., Kazarian K. S., Kazarian S. S., “On Men'shov's $C$-strong property”, Acta Sci. Math. (Szeged), 58 (1993), 253–260 | MR

[22] Menshov D. E., “O ryadakh Fure ot summiruemykh funktsii”, Trudy MMO, 1, 1952, 5–38 | MR | Zbl

[23] Menshov D. E., “O ryadakh Fure nepreryvnykh funktsii”, Uchenye zapiski MGU. Matem., 148 (1951), 108–132 | MR

[24] Ulyanov P. L., “O ryadakh po perestavlennoi trigonometricheskoi sisteme”, Izv. AN SSSR. Ser. matem., 22:4 (1958), 515–542 | MR | Zbl

[25] Talalyan A. A., “Predstavlenie izmerimykh funktsii ryadami”, UMN, 15:5 (1960), 77–141 | MR | Zbl

[26] Ulyanov P. L., “Predstavlenie funktsii ryadami i klassy $\varphi(L)$”, UMN, 25:2 (1972), 3–52 | MR

[27] Zhizhiashvili L. V., “O nekotorykh voprosakh iz teorii prostykh i kratnykh trigonometricheskikh i ortogonalnykh ryadov”, UMN, 28:2 (1973), 65–119 | MR

[28] Golubov B. I., “Nekotorye problemy kratnykh trigonometricheskikh ryadov”, UMN, 47:5 (1992), 97–162 | MR

[29] Dyachenko M. I., “Nekotorye problemy kratnykh trigonometricheskikh ryadov”, UMN, 47:5 (1992), 97–162 | MR | Zbl

[30] Carleson L., “On convergence and growth of partial sums of Fourier series”, Acta Math., 116 (1966), 135–157 | DOI | MR | Zbl

[31] Riss M., “Sur les functions conjuguées”, Math. Z., 27 (1927), 218–244

[32] Kolmogoroff A. N., “Sur les functions harmoniques conjuguées et les de Fourier séries”, Fund. Math., 7 (1925), 23–28

[33] Fefferman C., “The multiple problem for the ball”, Ann. of Math. (2), 94:2 (1971), 330–336 | DOI | MR | Zbl

[34] Konyagin S. V., “O skhodimosti kratnykh trigonometricheskikh ryadov Fure”, Tezisy dokladov Vsesoyuznoi shkoly po teorii funktsii (Erevan, 1987), 54

[35] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, Nauka, M., 1984 | MR | Zbl

[36] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR