Combinatorial description of a moduli space of curves and of
Sbornik. Mathematics, Tome 194 (2003) no. 10, pp. 1451-1473 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the description of extremal polynomials (that is, the typical solutions of least deviation problems) one uses real hyperelliptic curves. A partitioning of the moduli space of such curves into cells enumerated by trees is considered. As an application of these techniques the range of the period map of the universal cover of the moduli space is explicitly calculated. In addition, extremal polynomials are enumerated by weighted graphs.
@article{SM_2003_194_10_a1,
     author = {A. B. Bogatyrev},
     title = {Combinatorial description of a~moduli space of curves and of},
     journal = {Sbornik. Mathematics},
     pages = {1451--1473},
     year = {2003},
     volume = {194},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_10_a1/}
}
TY  - JOUR
AU  - A. B. Bogatyrev
TI  - Combinatorial description of a moduli space of curves and of
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1451
EP  - 1473
VL  - 194
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_10_a1/
LA  - en
ID  - SM_2003_194_10_a1
ER  - 
%0 Journal Article
%A A. B. Bogatyrev
%T Combinatorial description of a moduli space of curves and of
%J Sbornik. Mathematics
%D 2003
%P 1451-1473
%V 194
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2003_194_10_a1/
%G en
%F SM_2003_194_10_a1
A. B. Bogatyrev. Combinatorial description of a moduli space of curves and of. Sbornik. Mathematics, Tome 194 (2003) no. 10, pp. 1451-1473. http://geodesic.mathdoc.fr/item/SM_2003_194_10_a1/

[1] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976 | MR

[2] Bogatyrëv A. B., “Effektivnyi podkhod k zadacham o naimenshem uklonenii”, Matem. sb., 193:12 (2002), 21–40 | MR | Zbl

[3] Bogatyrëv A. B., “Ob effektivnom vychislenii mnogochlenov Chebyshëva dlya mnogikh otrezkov”, Matem. sb., 190:11 (1999), 15–50 | MR | Zbl

[4] Bogatyrëv A. B., “Predstavlenie prostranstv modulei krivykh i vychislenie ekstremalnykh mnogochlenov”, Matem. sb., 194:4 (2003), 3–28 | MR | Zbl

[5] Sodin M. L., Yuditskii P. M., “Funktsii, naimenee uklonyayuschiesya ot nulya na zamknutykh podmnozhestvakh deistvitelnoi osi”, Algebra i analiz, 4:2 (1992), 1–61 | MR | Zbl

[6] Griffits F., Kharris Dzh., Printsipy algebraicheskoi geometrii, Mir, M., 1982 | MR

[7] Birman J. S., Braids, links, and mapping class groups, Princeton Univ. Press, Princeton, NJ, 1974 | MR

[8] Vasilev V. A., Vetvyaschiesya integraly, MTsNMO, M., 2000

[9] Chekhov L. O., “Matrichnye modeli: geometriya prostranstv modulei i tochnye resheniya”, TMF, 127:2 (2001), 179–252 | MR | Zbl

[10] Meiman N. N., “K teorii mnogochlenov, naimenee uklonyayuschikhsya ot nulya”, Dokl. AN SSSR, 130:2 (1960), 257–260 | MR | Zbl

[11] Strebel K., Quadratic differentials, Springer-Verlag, Berlin, 1984 | MR

[12] Zvonkin D. A., Lando S. K., “O kratnostyakh otobrazheniya Lyashko–Loiengi na stratakh diskriminanta”, Funkts. analiz i ego prilozh., 33:3 (1999), 21–34 | MR | Zbl