Two classes of spaces reflexive in the sense of Pontryagin
Sbornik. Mathematics, Tome 194 (2003) no. 10, pp. 1427-1449 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Pontryagin–van Kampen duality for locally compact Abelian groups can be generalized in two ways to wider classes of topological Abelian groups: in the first approach the dual group $X^\bullet$ is endowed with the topology of uniform convergence on compact subsets of $X$ and in the second, with the topology of uniform convergence on totally bounded subsets of $X$. The corresponding two classes of groups “reflexive in the sense of Pontryagin–van Kampen” are very wide and are so close to each other that it was unclear until recently whether they coincide or not. A series of counterexamples constructed in this paper shows that these classes do not coincide and also answer several other questions arising in this theory. The results of the paper can be interpreted as evidence that the second approach to the generalization of the Pontryagin duality is more natural.
@article{SM_2003_194_10_a0,
     author = {S. S. Akbarov and E. T. Shavgulidze},
     title = {Two classes of spaces reflexive in the~sense of {Pontryagin}},
     journal = {Sbornik. Mathematics},
     pages = {1427--1449},
     year = {2003},
     volume = {194},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_10_a0/}
}
TY  - JOUR
AU  - S. S. Akbarov
AU  - E. T. Shavgulidze
TI  - Two classes of spaces reflexive in the sense of Pontryagin
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1427
EP  - 1449
VL  - 194
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_10_a0/
LA  - en
ID  - SM_2003_194_10_a0
ER  - 
%0 Journal Article
%A S. S. Akbarov
%A E. T. Shavgulidze
%T Two classes of spaces reflexive in the sense of Pontryagin
%J Sbornik. Mathematics
%D 2003
%P 1427-1449
%V 194
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2003_194_10_a0/
%G en
%F SM_2003_194_10_a0
S. S. Akbarov; E. T. Shavgulidze. Two classes of spaces reflexive in the sense of Pontryagin. Sbornik. Mathematics, Tome 194 (2003) no. 10, pp. 1427-1449. http://geodesic.mathdoc.fr/item/SM_2003_194_10_a0/

[1] Garibay Bonales F., Trigos-Arrieta F. J., Vera Mendoza R., “A characterization of Pontryagin–van Kampen duality for locally convex spaces”, Topology Appl., 121 (2002), 75–89 | DOI | MR | Zbl

[2] Akbarov S. S., “Stereotipnye lokalno vypuklye prostranstva”, Izv. RAN. Ser. matem., 64:4 (2000), 3–46 | MR | Zbl

[3] Akbarov S. S., “Pontryagin duality in the theory of topological vector spaces and in topological algebra”, J. Math. Sci., 113:2 (2003), 179–349 | DOI | MR | Zbl

[4] Waterhouse W. C., “Dual groups of vector spaces”, Pacific J. Math., 26:1 (1968), 193–196 | MR | Zbl

[5] Smith M. F., “The Pontrjagin duality theorem in linear spaces”, Ann. of Math. (2), 56:2 (1952), 248–253 | DOI | MR | Zbl

[6] Butzmann H.-P., “Pontrjagin–Dualität für topologische Vektorräume”, Arch. Math. (Basel), 28 (1977), 632–637 | MR | Zbl

[7] Banaszczyk W., Additive subgroups of topological vector spaces, Lecture Notes in Math., 1466, Springer-Verlag, Berlin, 1991 | MR | Zbl

[8] Brauner K., “Duals of Frechét spaces and a generalization of the Banach–Dieudonne theorem”, Duke Math. J., 40:4 (1973), 845–855 | DOI | MR | Zbl

[9] Ostling E. G., Wilansky A., “Locally convex topologies and the convex compactness property”, Math. Proc. Cambridge Philos. Soc., 75 (1974), 45–50 | DOI | MR | Zbl

[10] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR

[11] Kye S.-H., “Pontryagin duality in real linear topological spaces”, Chinese J. Math., 12:2 (1984), 129–136 | MR | Zbl

[12] Raikov D. A., “Vpolne nepreryvnye spektry lokalno vypuklykh prostranstv”, Trudy MMO, 7, 1957, 413–438 | MR

[13] Felps R., Lektsii o teoremakh Shoke, Mir, M., 1968

[14] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR

[15] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[16] Hernandez S., “Pontryagin duality for topological Abelian groups”, Math. Z., 238 (2001), 493–503 | DOI | MR | Zbl