@article{SM_2003_194_10_a0,
author = {S. S. Akbarov and E. T. Shavgulidze},
title = {Two classes of spaces reflexive in the~sense of {Pontryagin}},
journal = {Sbornik. Mathematics},
pages = {1427--1449},
year = {2003},
volume = {194},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2003_194_10_a0/}
}
S. S. Akbarov; E. T. Shavgulidze. Two classes of spaces reflexive in the sense of Pontryagin. Sbornik. Mathematics, Tome 194 (2003) no. 10, pp. 1427-1449. http://geodesic.mathdoc.fr/item/SM_2003_194_10_a0/
[1] Garibay Bonales F., Trigos-Arrieta F. J., Vera Mendoza R., “A characterization of Pontryagin–van Kampen duality for locally convex spaces”, Topology Appl., 121 (2002), 75–89 | DOI | MR | Zbl
[2] Akbarov S. S., “Stereotipnye lokalno vypuklye prostranstva”, Izv. RAN. Ser. matem., 64:4 (2000), 3–46 | MR | Zbl
[3] Akbarov S. S., “Pontryagin duality in the theory of topological vector spaces and in topological algebra”, J. Math. Sci., 113:2 (2003), 179–349 | DOI | MR | Zbl
[4] Waterhouse W. C., “Dual groups of vector spaces”, Pacific J. Math., 26:1 (1968), 193–196 | MR | Zbl
[5] Smith M. F., “The Pontrjagin duality theorem in linear spaces”, Ann. of Math. (2), 56:2 (1952), 248–253 | DOI | MR | Zbl
[6] Butzmann H.-P., “Pontrjagin–Dualität für topologische Vektorräume”, Arch. Math. (Basel), 28 (1977), 632–637 | MR | Zbl
[7] Banaszczyk W., Additive subgroups of topological vector spaces, Lecture Notes in Math., 1466, Springer-Verlag, Berlin, 1991 | MR | Zbl
[8] Brauner K., “Duals of Frechét spaces and a generalization of the Banach–Dieudonne theorem”, Duke Math. J., 40:4 (1973), 845–855 | DOI | MR | Zbl
[9] Ostling E. G., Wilansky A., “Locally convex topologies and the convex compactness property”, Math. Proc. Cambridge Philos. Soc., 75 (1974), 45–50 | DOI | MR | Zbl
[10] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR
[11] Kye S.-H., “Pontryagin duality in real linear topological spaces”, Chinese J. Math., 12:2 (1984), 129–136 | MR | Zbl
[12] Raikov D. A., “Vpolne nepreryvnye spektry lokalno vypuklykh prostranstv”, Trudy MMO, 7, 1957, 413–438 | MR
[13] Felps R., Lektsii o teoremakh Shoke, Mir, M., 1968
[14] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR
[15] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR
[16] Hernandez S., “Pontryagin duality for topological Abelian groups”, Math. Z., 238 (2001), 493–503 | DOI | MR | Zbl