Criteria for weak and strong continuity of representations
Sbornik. Mathematics, Tome 193 (2002) no. 9, pp. 1381-1396 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Several necessary and sufficient conditions for weak and strong continuity of representations of topological groups in Banach spaces are obtained. In particular, it is shown that a representation $S$ of a locally compact group $G$ in a Banach space is continuous in the strong (or, equivalently, in the weak) operator topology if and only if for some real number $q$, $0\leqslant q<1$, and each unit vector $\xi$ in the representation space of $S$ there exists a neighbourhood $U=U(\xi)\subset G$ of the identity element $e\in G$ such that $\|S(g)\xi-\xi\|\leqslant q$ for all $g\in U$. Versions of this criterion for other classes of groups (including not necessarily locally compact groups) and refinements for finite-dimensional representations are obtained; examples are discussed. Applications to the theory of quasirepresentations of topological groups are presented.
@article{SM_2002_193_9_a5,
     author = {A. I. Shtern},
     title = {Criteria for weak and strong continuity of representations},
     journal = {Sbornik. Mathematics},
     pages = {1381--1396},
     year = {2002},
     volume = {193},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_9_a5/}
}
TY  - JOUR
AU  - A. I. Shtern
TI  - Criteria for weak and strong continuity of representations
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1381
EP  - 1396
VL  - 193
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_9_a5/
LA  - en
ID  - SM_2002_193_9_a5
ER  - 
%0 Journal Article
%A A. I. Shtern
%T Criteria for weak and strong continuity of representations
%J Sbornik. Mathematics
%D 2002
%P 1381-1396
%V 193
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2002_193_9_a5/
%G en
%F SM_2002_193_9_a5
A. I. Shtern. Criteria for weak and strong continuity of representations. Sbornik. Mathematics, Tome 193 (2002) no. 9, pp. 1381-1396. http://geodesic.mathdoc.fr/item/SM_2002_193_9_a5/

[1] Banach S., Théorie des opérations linéaires, Subwencji Funduszu Narodowej, Warszawa, 1932 | Zbl

[2] Moore R. T., Measurable, continuous and smooth vectors for semi-groups and group representations, Mem. Amer. Math. Soc., 78, Amer. Math. Soc., Providence, RI, 1968 | MR | Zbl

[3] Johnson B. E., Cohomology of Banach algebras, Mem. Amer. Math. Soc., 127, Amer. Math. Soc., Providence, RI, 1972 | MR | Zbl

[4] Gaal S. A., Linear analysis and representation theory, Springer-Verlag, New York, 1973 | MR | Zbl

[5] Moore C. C., “Group extensions and cohomology for locally compact groups, III”, Trans. Amer. Math. Soc., 221:1 (1976), 1–33 | DOI | MR | Zbl

[6] Sasvari Z., Positive definite and definitizable functions, Akademie-Verlag, Berlin, 1994 | MR | Zbl

[7] Baker J. W., Lashkarizadeh B. M., “Representations and positive definite functions on topological semigroups”, Glasg. Math. J., 38:1 (1996), 99–111 | DOI | MR | Zbl

[8] Neeb K.-H., “On a theorem of S. Banach”, J. Lie Theory, 7:2 (1997), 293–300 | MR | Zbl

[9] Pestov V., “Review of [8]”, 98i:22003, Math. Rev., 1998 | MR

[10] Neeb K.-H., Pickrell D., “Supplements to the papers entitled: On a theorem of S. Banach, The separable representations of $U(H)$”, J. Lie Theory, 10:1 (2000), 107–109 | MR | Zbl

[11] Exel R., Laca M., “Continuous Fell bundles associated to measurable twisted actions”, Proc. Amer. Math. Soc., 125:3 (1997), 795–799 | DOI | MR | Zbl

[12] Grinlif F., Invariantnye srednie na topologicheskikh gruppakh i ikh prilozheniya, Mir, M., 1973

[13] Vershik A. M., “Schetnye gruppy, blizkie k konechnym”, prilozhenie k russkomu perevodu knigi [12], 112–135

[14] Shtern A. I., “Almost convergence and its applications to the Fourier–Stieltjes localization”, Russian J. Math. Phys., 1:1 (1993), 115–125 | MR | Zbl

[15] Shtern A. I., “Review of [18]”, 2001i:22008, Math. Rev., 2001 | MR

[16] Kazhdan D., “On $\varepsilon$-representations”, Israel J. Math., 43:4 (1982), 315–323 | DOI | MR | Zbl

[17] Johnson B. E., “Approximately multiplicative maps between Banach algebras”, J. London Math. Soc. (2), 37:2 (1988), 294–316 | DOI | MR | Zbl

[18] Cabello-Sanchez F., “Pseudo-characters and almost multiplicative functionals”, J. Math. Anal. Appl., 248:1 (2000), 275–289 | DOI | MR | Zbl

[19] Forti G. L., “The stability of homomorphisms and amenability, with applications to functional equations”, Abh. Math. Sem. Univ. Hamburg, 57 (1987), 215–226 | DOI | MR | Zbl

[20] Johnson B. E., “Weak amenability of group algebras”, Bull. London Math. Soc., 23:3 (1991), 281–284 | DOI | MR | Zbl

[21] Lyubich Yu. I., Vvedenie v teoriyu banakhovykh predstavlenii grupp, “Vischa shkola”, Kharkov, 1985 | MR | Zbl

[22] de Leeuw K., Glicksberg I., “The decomposition of certain group representations”, J. Anal. Math., 15 (1965), 135–192 | DOI | MR | Zbl

[23] Shtern A. I., “Kvazipredstavleniya i psevdopredstavleniya”, Funkts. analiz i ego prilozh., 25:2 (1991), 70–73 | MR | Zbl

[24] Shtern A. I., “Almost representations and quasi-symmetry”, Lie Groups and Lie Algebras. Their Representations, Generalizations and Applications, Math. Appl. (Soviet Ser.), 433, eds. B. P. Komrakov et al., Kluwer Acad. Publ., Dordrecht, 1998, 337–358 | MR | Zbl

[25] Shtern A. I., “Zhestkost i approksimatsiya kvazipredstavlenii amenabelnykh grupp”, Matem. zametki, 65:6 (1999), 908–920 | MR | Zbl

[26] Shtern A. I., “Continuity of Banach representations in terms of point variations”, Russian J. Math. Phys., 9:2 (2002), 251–253 | MR

[27] Shtern A. I., “Ob operatorakh v prostranstvakh Freshe, podobnykh izometriyam”, Vestn. MGU. Ser. 1. Matem., mekh., 1991, no. 4, 67–70 | MR | Zbl

[28] Bourgain J., Rosenthal H. P., “Geometrical implications of certain finite-dimensional decompositions”, Bull. Soc. Math. Belg. Sér. B, 32:1 (1980), 57–82 | MR | Zbl

[29] Bourgin R. D., Geometric aspects of convex sets with the Radon–Nikodým property, Lect. Notes in Math., 993, Springer-Verlag, Berlin, 1983 | MR | Zbl

[30] Ghoussoub N., Maurey B., “$G_\delta$ embeddings in Hilbert space, II”, Math. Scand., 54 (1984), 70–78 | MR

[31] Chu Cho-Ho, “A note on scattered $C^*$-algebras and the Radon–Nikodým property”, J. London Math. Soc., 24:3 (1981), 533–536 | DOI | MR | Zbl

[32] Megrelishvili M. G., “Operator topologies and reflexive representability”, Nuclear groups and Lie groups, Res. Expo. Math., 24, eds. E. Martin Peinador, J. Nunez Garsia, Heldermann, Berlin, 2001, 197–208 | MR | Zbl

[33] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, T. I, Nauka, M., 1975 | MR

[34] Glushkov V. M., “Struktura lokalno bikompaktnykh grupp i pyataya problema Gilberta”, UMN, 12:2 (1957), 3–41 | MR | Zbl

[35] Ahdout S., Hurwitz C., Itzkowitz G., Rothman S., Strassberg H., “Maximal protori in compact topological groups”, Papers on general topology and applications (Flushing, NY, 1992), Ann. New York Acad. Sci., 728, New York Acad. Sci, New York, 1994, 227–236 | MR | Zbl

[36] Paterson A. L. T., Amenability, Math. Surv. Monogr., 29, Amer. Math. Soc., Providence, RI, 1988 | MR | MR | Zbl

[37] Hofmann K. H., Morris S. A., The Structure of compact groups, de Gruyter, Berlin, 1998 | MR