@article{SM_2002_193_9_a5,
author = {A. I. Shtern},
title = {Criteria for weak and strong continuity of representations},
journal = {Sbornik. Mathematics},
pages = {1381--1396},
year = {2002},
volume = {193},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2002_193_9_a5/}
}
A. I. Shtern. Criteria for weak and strong continuity of representations. Sbornik. Mathematics, Tome 193 (2002) no. 9, pp. 1381-1396. http://geodesic.mathdoc.fr/item/SM_2002_193_9_a5/
[1] Banach S., Théorie des opérations linéaires, Subwencji Funduszu Narodowej, Warszawa, 1932 | Zbl
[2] Moore R. T., Measurable, continuous and smooth vectors for semi-groups and group representations, Mem. Amer. Math. Soc., 78, Amer. Math. Soc., Providence, RI, 1968 | MR | Zbl
[3] Johnson B. E., Cohomology of Banach algebras, Mem. Amer. Math. Soc., 127, Amer. Math. Soc., Providence, RI, 1972 | MR | Zbl
[4] Gaal S. A., Linear analysis and representation theory, Springer-Verlag, New York, 1973 | MR | Zbl
[5] Moore C. C., “Group extensions and cohomology for locally compact groups, III”, Trans. Amer. Math. Soc., 221:1 (1976), 1–33 | DOI | MR | Zbl
[6] Sasvari Z., Positive definite and definitizable functions, Akademie-Verlag, Berlin, 1994 | MR | Zbl
[7] Baker J. W., Lashkarizadeh B. M., “Representations and positive definite functions on topological semigroups”, Glasg. Math. J., 38:1 (1996), 99–111 | DOI | MR | Zbl
[8] Neeb K.-H., “On a theorem of S. Banach”, J. Lie Theory, 7:2 (1997), 293–300 | MR | Zbl
[9] Pestov V., “Review of [8]”, 98i:22003, Math. Rev., 1998 | MR
[10] Neeb K.-H., Pickrell D., “Supplements to the papers entitled: On a theorem of S. Banach, The separable representations of $U(H)$”, J. Lie Theory, 10:1 (2000), 107–109 | MR | Zbl
[11] Exel R., Laca M., “Continuous Fell bundles associated to measurable twisted actions”, Proc. Amer. Math. Soc., 125:3 (1997), 795–799 | DOI | MR | Zbl
[12] Grinlif F., Invariantnye srednie na topologicheskikh gruppakh i ikh prilozheniya, Mir, M., 1973
[13] Vershik A. M., “Schetnye gruppy, blizkie k konechnym”, prilozhenie k russkomu perevodu knigi [12], 112–135
[14] Shtern A. I., “Almost convergence and its applications to the Fourier–Stieltjes localization”, Russian J. Math. Phys., 1:1 (1993), 115–125 | MR | Zbl
[15] Shtern A. I., “Review of [18]”, 2001i:22008, Math. Rev., 2001 | MR
[16] Kazhdan D., “On $\varepsilon$-representations”, Israel J. Math., 43:4 (1982), 315–323 | DOI | MR | Zbl
[17] Johnson B. E., “Approximately multiplicative maps between Banach algebras”, J. London Math. Soc. (2), 37:2 (1988), 294–316 | DOI | MR | Zbl
[18] Cabello-Sanchez F., “Pseudo-characters and almost multiplicative functionals”, J. Math. Anal. Appl., 248:1 (2000), 275–289 | DOI | MR | Zbl
[19] Forti G. L., “The stability of homomorphisms and amenability, with applications to functional equations”, Abh. Math. Sem. Univ. Hamburg, 57 (1987), 215–226 | DOI | MR | Zbl
[20] Johnson B. E., “Weak amenability of group algebras”, Bull. London Math. Soc., 23:3 (1991), 281–284 | DOI | MR | Zbl
[21] Lyubich Yu. I., Vvedenie v teoriyu banakhovykh predstavlenii grupp, “Vischa shkola”, Kharkov, 1985 | MR | Zbl
[22] de Leeuw K., Glicksberg I., “The decomposition of certain group representations”, J. Anal. Math., 15 (1965), 135–192 | DOI | MR | Zbl
[23] Shtern A. I., “Kvazipredstavleniya i psevdopredstavleniya”, Funkts. analiz i ego prilozh., 25:2 (1991), 70–73 | MR | Zbl
[24] Shtern A. I., “Almost representations and quasi-symmetry”, Lie Groups and Lie Algebras. Their Representations, Generalizations and Applications, Math. Appl. (Soviet Ser.), 433, eds. B. P. Komrakov et al., Kluwer Acad. Publ., Dordrecht, 1998, 337–358 | MR | Zbl
[25] Shtern A. I., “Zhestkost i approksimatsiya kvazipredstavlenii amenabelnykh grupp”, Matem. zametki, 65:6 (1999), 908–920 | MR | Zbl
[26] Shtern A. I., “Continuity of Banach representations in terms of point variations”, Russian J. Math. Phys., 9:2 (2002), 251–253 | MR
[27] Shtern A. I., “Ob operatorakh v prostranstvakh Freshe, podobnykh izometriyam”, Vestn. MGU. Ser. 1. Matem., mekh., 1991, no. 4, 67–70 | MR | Zbl
[28] Bourgain J., Rosenthal H. P., “Geometrical implications of certain finite-dimensional decompositions”, Bull. Soc. Math. Belg. Sér. B, 32:1 (1980), 57–82 | MR | Zbl
[29] Bourgin R. D., Geometric aspects of convex sets with the Radon–Nikodým property, Lect. Notes in Math., 993, Springer-Verlag, Berlin, 1983 | MR | Zbl
[30] Ghoussoub N., Maurey B., “$G_\delta$ embeddings in Hilbert space, II”, Math. Scand., 54 (1984), 70–78 | MR
[31] Chu Cho-Ho, “A note on scattered $C^*$-algebras and the Radon–Nikodým property”, J. London Math. Soc., 24:3 (1981), 533–536 | DOI | MR | Zbl
[32] Megrelishvili M. G., “Operator topologies and reflexive representability”, Nuclear groups and Lie groups, Res. Expo. Math., 24, eds. E. Martin Peinador, J. Nunez Garsia, Heldermann, Berlin, 2001, 197–208 | MR | Zbl
[33] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, T. I, Nauka, M., 1975 | MR
[34] Glushkov V. M., “Struktura lokalno bikompaktnykh grupp i pyataya problema Gilberta”, UMN, 12:2 (1957), 3–41 | MR | Zbl
[35] Ahdout S., Hurwitz C., Itzkowitz G., Rothman S., Strassberg H., “Maximal protori in compact topological groups”, Papers on general topology and applications (Flushing, NY, 1992), Ann. New York Acad. Sci., 728, New York Acad. Sci, New York, 1994, 227–236 | MR | Zbl
[36] Paterson A. L. T., Amenability, Math. Surv. Monogr., 29, Amer. Math. Soc., Providence, RI, 1988 | MR | MR | Zbl
[37] Hofmann K. H., Morris S. A., The Structure of compact groups, de Gruyter, Berlin, 1998 | MR