Criteria for weak and strong continuity of representations
Sbornik. Mathematics, Tome 193 (2002) no. 9, pp. 1381-1396

Voir la notice de l'article provenant de la source Math-Net.Ru

Several necessary and sufficient conditions for weak and strong continuity of representations of topological groups in Banach spaces are obtained. In particular, it is shown that a representation $S$ of a locally compact group $G$ in a Banach space is continuous in the strong (or, equivalently, in the weak) operator topology if and only if for some real number $q$, $0\leqslant q1$, and each unit vector $\xi$ in the representation space of $S$ there exists a neighbourhood $U=U(\xi)\subset G$ of the identity element $e\in G$ such that $\|S(g)\xi-\xi\|\leqslant q$ for all $g\in U$. Versions of this criterion for other classes of groups (including not necessarily locally compact groups) and refinements for finite-dimensional representations are obtained; examples are discussed. Applications to the theory of quasirepresentations of topological groups are presented.
@article{SM_2002_193_9_a5,
     author = {A. I. Shtern},
     title = {Criteria for weak and strong continuity of representations},
     journal = {Sbornik. Mathematics},
     pages = {1381--1396},
     publisher = {mathdoc},
     volume = {193},
     number = {9},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_9_a5/}
}
TY  - JOUR
AU  - A. I. Shtern
TI  - Criteria for weak and strong continuity of representations
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1381
EP  - 1396
VL  - 193
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_9_a5/
LA  - en
ID  - SM_2002_193_9_a5
ER  - 
%0 Journal Article
%A A. I. Shtern
%T Criteria for weak and strong continuity of representations
%J Sbornik. Mathematics
%D 2002
%P 1381-1396
%V 193
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_9_a5/
%G en
%F SM_2002_193_9_a5
A. I. Shtern. Criteria for weak and strong continuity of representations. Sbornik. Mathematics, Tome 193 (2002) no. 9, pp. 1381-1396. http://geodesic.mathdoc.fr/item/SM_2002_193_9_a5/