Stabilization of solutions of the first mixed problem for the wave
Sbornik. Mathematics, Tome 193 (2002) no. 9, pp. 1349-1380 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study the rate of decay, for large values of time, of the local energy of solutions of the first mixed problem for the wave equation in unbounded domains $\Omega\subset\mathbb R^n$, $n\geqslant 2$, with smooth non-compact boundaries. Under the assumption that the boundary surface satisfies a condition generalizing the condition of star-shapedness with respect to the origin we establish a power estimate of the rate of decay of the local energy as $t\to\infty$. The proof is based on uniform estimates in the half-plane $\{\operatorname{Im} k>0\}$ of solutions of the corresponding spectral problem– the first boundary-value problem for the Helmholtz equation–obtained in the paper.
@article{SM_2002_193_9_a4,
     author = {A. V. Filinovskii},
     title = {Stabilization of solutions of the~first mixed problem for the~wave},
     journal = {Sbornik. Mathematics},
     pages = {1349--1380},
     year = {2002},
     volume = {193},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_9_a4/}
}
TY  - JOUR
AU  - A. V. Filinovskii
TI  - Stabilization of solutions of the first mixed problem for the wave
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1349
EP  - 1380
VL  - 193
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_9_a4/
LA  - en
ID  - SM_2002_193_9_a4
ER  - 
%0 Journal Article
%A A. V. Filinovskii
%T Stabilization of solutions of the first mixed problem for the wave
%J Sbornik. Mathematics
%D 2002
%P 1349-1380
%V 193
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2002_193_9_a4/
%G en
%F SM_2002_193_9_a4
A. V. Filinovskii. Stabilization of solutions of the first mixed problem for the wave. Sbornik. Mathematics, Tome 193 (2002) no. 9, pp. 1349-1380. http://geodesic.mathdoc.fr/item/SM_2002_193_9_a4/

[1] Morawetz C. S., “The decay of solutions of the exterior initial-boundary value problem for the wave equation”, Comm. Pure Appl. Math., 14:3 (1961), 561–568 | DOI | MR | Zbl

[2] Morawetz C. S., “The limiting amplitude principle”, Comm. Pure Appl. Math., 15:3 (1962), 349–361 | DOI | MR | Zbl

[3] Lax P. D., Morawetz C. S., Phillips R. S., “Exponential decay of solutions of the wave equation in the exterior of a star-shaped obstacle”, Comm. Pure Appl. Math., 16:4 (1963), 477–486 | DOI | MR | Zbl

[4] Laks P. D., Fillips R. S., Teoriya rasseyaniya, Mir, M., 1971 | MR

[5] Mikhailov V. P., “O kornyakh funktsii Makdonalda”, Tr. MIAN, 103, Nauka, M., 1968, 162–171 | MR

[6] Ivrii V. Ya., “Eksponentsialnoe ubyvanie reshenii volnovogo uravneniya vo vneshnosti pochti zvezdnoi oblasti”, Dokl. AN SSSR, 189:5 (1969), 938–940 | MR | Zbl

[7] Morawetz C. S., “Decay for solutions of the exterior problem for the wave equation”, Comm. Pure Appl. Math., 28:2 (1975), 229–264 | DOI | MR | Zbl

[8] Morawetz C. S., Ralston J. V., Strauss W. A., “Decay of solutions of the wave equation outside nontrapping obstacles”, Comm. Pure Appl. Math., 30:4 (1977), 447–508 | DOI | MR | Zbl

[9] Muravei L. A., “Ob asimptoticheskom povedenii pri bolshikh znacheniyakh vremeni reshenii vneshnikh kraevykh zadach dlya volnovogo uravneniya s dvumya prostranstvennymi peremennymi”, Matem. sb., 107(149):1(9) (1978), 84–133 | MR | Zbl

[10] Zachmanoglou E. C., “An example of slow decay of the solution of the initial-boundary value problem for the wave equation in unbounded regions”, Bull. Amer. Math. Soc., 70:4 (1964), 633–636 | DOI | MR | Zbl

[11] Zachmanoglou E. C., “The decay of solutions of the initial-boundary value problem for the wave equation in unbounded regions”, Arch. Ration. Mech. Anal., 14:4 (1963), 312–325 | MR | Zbl

[12] Muravei L. A., “Volnovoe uravnenie i uravnenie Gelmgoltsa v neogranichennoi oblasti so zvezdnoi granitsei”, Tr. MIAN, 185, Nauka, M., 1988, 171–180 | MR

[13] Filinovskii A. V., “Stabilization of solutions of wave equation in domains with star-shaped boundaries”, Russian J. Math. Phys., 8:4 (2001), 433–452 | MR | Zbl

[14] Filinovskii A. V., “Stabilizatsiya reshenii volnovogo uravneniya v neogranichennykh oblastyakh”, Matem. sb., 187:6 (1996), 131–160 | MR | Zbl

[15] Filinovskii A. V., “Stabilizatsiya reshenii volnovogo uravneniya v oblastyakh s nekompaktnymi granitsami”, Matem. sb., 189:8 (1998), 141–160 | MR | Zbl

[16] Filinovskii A. V., “Ubyvanie energii reshenii pervoi smeshannoi zadachi dlya volnovogo uravneniya v oblastyakh s nekompaktnymi granitsami”, Matem. zametki, 67:2 (2000), 311–315 | MR | Zbl

[17] Morawetz C. S., Ludwig D., “An inequality for the reduced wave operator and the justification of geometrical optics”, Comm. Pure Appl. Math., 21:2 (1968), 187–203 | DOI | MR | Zbl

[18] Vinnik A. A., Eidus D. M., “Printsip predelnoi amplitudy dlya oblastei tipa paraboloida”, Izv. vuzov. Ser. matem., 1979, no. 3(202), 28–37 | MR | Zbl

[19] Filinovskii A. V., “On the behaviour of the resolvent for the Dirichlet problem to the Laplace operator in unbounded domains for small parameter values”, J. Nat. Geom., 22:5 (2002), 49–80 | MR

[20] Mikhlin S. G., “Integrirovanie uravneniya Puassona v beskonechnoi oblasti”, Dokl. AN SSSR, 91:5 (1953), 1015–1017 | MR

[21] Mikhlin S. G., “O resheniyakh s konechnoi energiei u ellipticheskikh differentsialnykh uravnenii”, Uch. zapiski Len. ped. inst. im. A. I. Gertsena, 183:1 (1958), 5–21