Stabilization of solutions of the~first mixed problem for the~wave
Sbornik. Mathematics, Tome 193 (2002) no. 9, pp. 1349-1380

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the rate of decay, for large values of time, of the local energy of solutions of the first mixed problem for the wave equation in unbounded domains $\Omega\subset\mathbb R^n$, $n\geqslant 2$, with smooth non-compact boundaries. Under the assumption that the boundary surface satisfies a condition generalizing the condition of star-shapedness with respect to the origin we establish a power estimate of the rate of decay of the local energy as $t\to\infty$. The proof is based on uniform estimates in the half-plane $\{\operatorname{Im} k>0\}$ of solutions of the corresponding spectral problem– the first boundary-value problem for the Helmholtz equation–obtained in the paper.
@article{SM_2002_193_9_a4,
     author = {A. V. Filinovskii},
     title = {Stabilization of solutions of the~first mixed problem for the~wave},
     journal = {Sbornik. Mathematics},
     pages = {1349--1380},
     publisher = {mathdoc},
     volume = {193},
     number = {9},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_9_a4/}
}
TY  - JOUR
AU  - A. V. Filinovskii
TI  - Stabilization of solutions of the~first mixed problem for the~wave
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1349
EP  - 1380
VL  - 193
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_9_a4/
LA  - en
ID  - SM_2002_193_9_a4
ER  - 
%0 Journal Article
%A A. V. Filinovskii
%T Stabilization of solutions of the~first mixed problem for the~wave
%J Sbornik. Mathematics
%D 2002
%P 1349-1380
%V 193
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_9_a4/
%G en
%F SM_2002_193_9_a4
A. V. Filinovskii. Stabilization of solutions of the~first mixed problem for the~wave. Sbornik. Mathematics, Tome 193 (2002) no. 9, pp. 1349-1380. http://geodesic.mathdoc.fr/item/SM_2002_193_9_a4/