Estimates of the integral modulus of continuity of functions with
Sbornik. Mathematics, Tome 193 (2002) no. 9, pp. 1333-1347

Voir la notice de l'article provenant de la source Math-Net.Ru

The functions under consideration are those satisfying the condition $\Delta a_i=\Delta b_i=0$ for all $i\ne n_j$, where $\{n_j\}$ is a lacunary sequence. An asymptotic estimate of the rate of decrease of the modulus of continuity in the $L$-metric of such functions in terms of their Fourier coefficients is obtained.
@article{SM_2002_193_9_a3,
     author = {S. A. Telyakovskii},
     title = {Estimates of the integral modulus of continuity of functions with},
     journal = {Sbornik. Mathematics},
     pages = {1333--1347},
     publisher = {mathdoc},
     volume = {193},
     number = {9},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_9_a3/}
}
TY  - JOUR
AU  - S. A. Telyakovskii
TI  - Estimates of the integral modulus of continuity of functions with
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1333
EP  - 1347
VL  - 193
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_9_a3/
LA  - en
ID  - SM_2002_193_9_a3
ER  - 
%0 Journal Article
%A S. A. Telyakovskii
%T Estimates of the integral modulus of continuity of functions with
%J Sbornik. Mathematics
%D 2002
%P 1333-1347
%V 193
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_9_a3/
%G en
%F SM_2002_193_9_a3
S. A. Telyakovskii. Estimates of the integral modulus of continuity of functions with. Sbornik. Mathematics, Tome 193 (2002) no. 9, pp. 1333-1347. http://geodesic.mathdoc.fr/item/SM_2002_193_9_a3/