Estimates of the integral modulus of continuity of functions with
Sbornik. Mathematics, Tome 193 (2002) no. 9, pp. 1333-1347
Voir la notice de l'article provenant de la source Math-Net.Ru
The functions under consideration are those satisfying the condition $\Delta a_i=\Delta b_i=0$
for all $i\ne n_j$, where $\{n_j\}$ is a lacunary sequence.
An asymptotic estimate of the rate of decrease of the modulus of continuity in the $L$-metric of such functions in terms of their Fourier coefficients is obtained.
@article{SM_2002_193_9_a3,
author = {S. A. Telyakovskii},
title = {Estimates of the integral modulus of continuity of functions with},
journal = {Sbornik. Mathematics},
pages = {1333--1347},
publisher = {mathdoc},
volume = {193},
number = {9},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2002_193_9_a3/}
}
S. A. Telyakovskii. Estimates of the integral modulus of continuity of functions with. Sbornik. Mathematics, Tome 193 (2002) no. 9, pp. 1333-1347. http://geodesic.mathdoc.fr/item/SM_2002_193_9_a3/