Estimates of the integral modulus of continuity of functions with
Sbornik. Mathematics, Tome 193 (2002) no. 9, pp. 1333-1347 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The functions under consideration are those satisfying the condition $\Delta a_i=\Delta b_i=0$ for all $i\ne n_j$, where $\{n_j\}$ is a lacunary sequence. An asymptotic estimate of the rate of decrease of the modulus of continuity in the $L$-metric of such functions in terms of their Fourier coefficients is obtained.
@article{SM_2002_193_9_a3,
     author = {S. A. Telyakovskii},
     title = {Estimates of the integral modulus of continuity of functions with},
     journal = {Sbornik. Mathematics},
     pages = {1333--1347},
     year = {2002},
     volume = {193},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_9_a3/}
}
TY  - JOUR
AU  - S. A. Telyakovskii
TI  - Estimates of the integral modulus of continuity of functions with
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1333
EP  - 1347
VL  - 193
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_9_a3/
LA  - en
ID  - SM_2002_193_9_a3
ER  - 
%0 Journal Article
%A S. A. Telyakovskii
%T Estimates of the integral modulus of continuity of functions with
%J Sbornik. Mathematics
%D 2002
%P 1333-1347
%V 193
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2002_193_9_a3/
%G en
%F SM_2002_193_9_a3
S. A. Telyakovskii. Estimates of the integral modulus of continuity of functions with. Sbornik. Mathematics, Tome 193 (2002) no. 9, pp. 1333-1347. http://geodesic.mathdoc.fr/item/SM_2002_193_9_a3/

[1] Buntinas M., Tanović-Miller N., “New integrability and $L^1$-convegence classes for even trigonometric series”, Rad. Mat., 6 (1990), 149–170 | MR | Zbl

[2] Weiss M., “A theorem on lacunary trigonometric series”, Ortogonal expansions and their continuous analogues (Edwargsville, Ill., 1967), SIU Press, Carbondale, Ill., 1968, 227–230 | MR

[3] Balashov L. A., Telyakovskii S. A., “Nekotorye svoistva lakunarnykh ryadov i integriruemost trigonometricheskikh ryadov”, Tr. MIAN, 143, Nauka, M., 1977, 32–41 | MR | Zbl

[4] Telyakovskii S. A., “Otsenki modulya nepreryvnosti v metrike $L$ funktsii odnoi peremennoi cherez koeffitsienty Fure”, Ukr. matem. zhurn., 46 (1994), 626–632 | MR | Zbl

[5] Telyakovskii S. A., “O chastnykh summakh ryadov Fure funktsii ogranichennoi variatsii”, Trudy MIRAN, 219, Nauka, M., 1997, 378–386 | MR | Zbl

[6] Belov A. S., “On some local properties of the sum of lacunary trigonometric series”, Anal. Math., 14 (1988), 65–97 | DOI | MR | Zbl