@article{SM_2002_193_9_a3,
author = {S. A. Telyakovskii},
title = {Estimates of the integral modulus of continuity of functions with},
journal = {Sbornik. Mathematics},
pages = {1333--1347},
year = {2002},
volume = {193},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2002_193_9_a3/}
}
S. A. Telyakovskii. Estimates of the integral modulus of continuity of functions with. Sbornik. Mathematics, Tome 193 (2002) no. 9, pp. 1333-1347. http://geodesic.mathdoc.fr/item/SM_2002_193_9_a3/
[1] Buntinas M., Tanović-Miller N., “New integrability and $L^1$-convegence classes for even trigonometric series”, Rad. Mat., 6 (1990), 149–170 | MR | Zbl
[2] Weiss M., “A theorem on lacunary trigonometric series”, Ortogonal expansions and their continuous analogues (Edwargsville, Ill., 1967), SIU Press, Carbondale, Ill., 1968, 227–230 | MR
[3] Balashov L. A., Telyakovskii S. A., “Nekotorye svoistva lakunarnykh ryadov i integriruemost trigonometricheskikh ryadov”, Tr. MIAN, 143, Nauka, M., 1977, 32–41 | MR | Zbl
[4] Telyakovskii S. A., “Otsenki modulya nepreryvnosti v metrike $L$ funktsii odnoi peremennoi cherez koeffitsienty Fure”, Ukr. matem. zhurn., 46 (1994), 626–632 | MR | Zbl
[5] Telyakovskii S. A., “O chastnykh summakh ryadov Fure funktsii ogranichennoi variatsii”, Trudy MIRAN, 219, Nauka, M., 1997, 378–386 | MR | Zbl
[6] Belov A. S., “On some local properties of the sum of lacunary trigonometric series”, Anal. Math., 14 (1988), 65–97 | DOI | MR | Zbl