Padé approximants for entire functions with regularly decreasing Taylor coefficients
Sbornik. Mathematics, Tome 193 (2002) no. 9, pp. 1303-1332 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a class of entire functions the asymptotic behaviour of the Hadamard determinants $D_{n,m}$ as $0\leqslant m\leqslant m(n)\to\infty$ and $n\to\infty$ is described. This enables one to study the behaviour of parabolic sequences from Padé and Chebyshev tables for many individual entire functions. The central result of the paper is as follows: for some sequences $\{(n,m(n))\}$ in certain classes of entire functions (with regular Taylor coefficients) the Padé approximants $\{\pi_{n,m(n)}\}$, which provide the locally best possible rational approximations, converge to the given function uniformly on the compact set $D=\{z:|z|\leqslant 1\}$ with asymptotically best rate.
@article{SM_2002_193_9_a2,
     author = {V. N. Rusak and A. P. Starovoitov},
     title = {Pad\'e approximants for entire functions with regularly decreasing {Taylor} coefficients},
     journal = {Sbornik. Mathematics},
     pages = {1303--1332},
     year = {2002},
     volume = {193},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_9_a2/}
}
TY  - JOUR
AU  - V. N. Rusak
AU  - A. P. Starovoitov
TI  - Padé approximants for entire functions with regularly decreasing Taylor coefficients
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1303
EP  - 1332
VL  - 193
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_9_a2/
LA  - en
ID  - SM_2002_193_9_a2
ER  - 
%0 Journal Article
%A V. N. Rusak
%A A. P. Starovoitov
%T Padé approximants for entire functions with regularly decreasing Taylor coefficients
%J Sbornik. Mathematics
%D 2002
%P 1303-1332
%V 193
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2002_193_9_a2/
%G en
%F SM_2002_193_9_a2
V. N. Rusak; A. P. Starovoitov. Padé approximants for entire functions with regularly decreasing Taylor coefficients. Sbornik. Mathematics, Tome 193 (2002) no. 9, pp. 1303-1332. http://geodesic.mathdoc.fr/item/SM_2002_193_9_a2/

[1] Beiker Dzh., Greivs-Morris P., Approksimatsii Pade, Mir, M., 1986 | MR

[2] Dzyadyk V. K., “Ob asimptotike diagonalnykh approksimatsii Pade funktsii $\sin z$, $\cos z$, $\sh z$ i $\ch z$”, Matem. sb., 108(150):2 (1979), 247–267 | MR | Zbl

[3] Alper S. Ya., “Ob asimptoticheskikh znacheniyakh nailuchshego priblizheniya analiticheskikh funktsii v kompleksnoi oblasti”, UMN, 14:1(85) (1959), 131–134 | MR | Zbl

[4] Gonchar A. A., “Ob odnoi teoreme Saffa”, Matem. sb., 94:1 (1974), 152–157 | Zbl

[5] Saff E. B., “The convergence of rational functions of best approximation to the exponential function, II”, Proc. Amer. Math. Soc., 32 (1972), 187–194 | DOI | MR | Zbl

[6] Saff E. B., “On the degree of best rational approximation to the exponential function”, J. Approx. Theory, 9:2 (1973), 97–101 | DOI | MR | Zbl

[7] Braess D., “On the conjecture of Meinardus on rational approximation of $e^z$”, J. Approx. Theory, 40:4 (1984), 375–379 | DOI | MR | Zbl

[8] Trefethen L. N., “The asymptotic accuracy of rational best approximations to $e^z$ on a disk”, J. Approx. Theory, 40:4 (1984), 380–384 | DOI | MR

[9] Aptekarev A. I., “Asimptotika opredelitelei Adamara i skhodimost strok approksimatsii Pade dlya summy eksponent”, Matem. sb., 113(155):4(12) (1980), 520–537 | MR | Zbl

[10] Starovoitov A. P., Starovoitova N. A., “Asimptotika opredelitelei Adamara i povedenie strok tablits Pade i Chebyshëva dlya summy eksponent”, Matem. sb., 187:2 (1996), 141–157 | MR | Zbl

[11] Rusak V. N., “Sravnenie strok ratsionalnoi tablitsy Chebyshëva–Gonchara dlya individualnykh funktsii”, Dokl. AN BSSR, 30:11 (1986), 969–971 | MR | Zbl

[12] Rusak V. N., “Issledovanie strok ratsionalnoi tablitsy Chebyshëva dlya individualnykh analiticheskikh funktsii”, Izv. AN BSSR. Ser. fiz.-matem. nauk, 1988, no. 6, 26–30 | MR | Zbl

[13] Levin A. L., Lubinsky D. S., “Rows and diagonals of the Walsh array for entire functions with smooth Maclaurin series coefficients”, Constr. Approx., 6:3 (1990), 257–286 | DOI | MR | Zbl

[14] Berezkina L. L., Rusak V. N., “O nailuchshikh ratsionalnykh approksimatsiyakh nekotorykh tselykh funktsii”, Vestsi AN BSSR. Ser. fiz.-matem. navuk, 1990, no. 4, 27–32 | MR | Zbl

[15] Lorentz G., v. Golitschek M., Makavoz Y., Constructive Approximation. Advanced Problems, Springer-Verlag, Berlin, 1996 | MR

[16] Levin A. L., Lubinsky D. S., “Best rational approximations of entire functions whose Maclaurin series coefficients decrease rapidly and smoothly”, Trans. Amer. Math. Soc., 293:2 (1986), 533–545 | DOI | MR | Zbl

[17] Rusak V. N., Starovoitov A. P., “O svoistvakh tablits Pade i Chebyshëva tselykh funktsii s pravilnym ubyvaniem koeffitsientov Teilora”, Dokl. NAN Belarusi, 46:3 (2002), 24–27 | MR

[18] Rusak V. N., Starovoitov A. P., “Ratsionalnaya approksimatsiya tselykh funktsii s pravilnym ubyvaniem koeffitsientov Teilora”, Conference “Functional Methods in Approximation Theory, Operator Theory, Stochastic Analysis and Statistics”, Abstracts, Kyiv National Taras Shevchenko University, Kyiv, 2001, 69–70

[19] Rusak V. N., Starovoitov A. P., “Asimptotika opredelitelei Adamara tselykh funktsii s pravilnym ubyvaniem koeffitsientov Teilora”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tezisy dokladov 11-i Saratovskoi zimnei shkoly, Izd-vo GosUNTs “Kolledzh”, Saratov, 2002, 173–174

[20] Rusak V. N., Ta Khong Kuang, “Asimptotika parabolicheskikh zvenev ratsionalnoi tablitsy Chebyshëva dlya analiticheskikh funktsii”, Dokl. AN BSSR, 34:10 (1990), 868–871 | MR

[21] Veil G., Klassicheskie gruppy, IL, M., 1947

[22] Khua Lo-ken, Garmonicheskii analiz funktsii mnogikh kompleksnykh peremennykh v klassicheskikh oblastyakh, IL, M., 1959

[23] Bernshtein S. N., Sobranie sochinenii v 4-kh tomakh, T. 2, Izd-vo AN SSSR, M., 1954

[24] Polia G., Segë G., Zadachi i teoremy iz analiza, T. 1, Nauka, M., 1978

[25] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, Nauka, M., 1981 | MR | Zbl