On sets of convergence and divergence of multiple orthogonal series
Sbornik. Mathematics, Tome 193 (2002) no. 9, pp. 1281-1301 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Multiple Fourier series with respect to uniformly bounded orthonormal systems (ONSs) are studied. The following results are obtained. \medskip Theorem 1. \textit{Let $\Phi=\{\varphi_n(x)\}_{n=1}^\infty$ be a complete orthonormal system on $[0,1]$ that is uniformly bounded by $M$ on this interval, assume that $m\geqslant2$, and let $\Phi(m)=\{\varphi_{\mathbf n}(\mathbf x)\}_{\mathbf n \in\mathbb N^m}$, where $\varphi_{\mathbf n}(\mathbf n) =\varphi_{n_1}(x_1)\dotsb\varphi_{n_m}(x_m)$. Then there exists a function $f(\mathbf x)\in L([0,1]^m)$ cubically diverges on some measurable subset $\mathscr H$ of $[0,1]^m$ with $\mu_m(\mathscr H)\geqslant 1-(1-1/M^2)^m$. } \medskip Theorem 3. For $M>1$ and an integer $m\geqslant 2$ let $E$ be an arbitrary measurable subset of $[0,1]$ such that $\mu(E)=1-1/M^2$. Then there exists a complete orthonormal system $\Phi$ on $[0,1]$ uniformly bounded by $M$ there such that the multiple Fourier series of each function $f(\mathbf x)\in L([0,1]^m)$ with respect to the product system $\Phi(m)$ cubically converges to $f(\mathbf x)$ a.e. on $E^m$. \medskip Definitive results in this direction are established also for incomplete uniformly bounded ONSs.
@article{SM_2002_193_9_a1,
     author = {M. I. Dyachenko and K. S. Kazarian},
     title = {On sets of convergence and divergence of multiple orthogonal series},
     journal = {Sbornik. Mathematics},
     pages = {1281--1301},
     year = {2002},
     volume = {193},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_9_a1/}
}
TY  - JOUR
AU  - M. I. Dyachenko
AU  - K. S. Kazarian
TI  - On sets of convergence and divergence of multiple orthogonal series
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1281
EP  - 1301
VL  - 193
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_9_a1/
LA  - en
ID  - SM_2002_193_9_a1
ER  - 
%0 Journal Article
%A M. I. Dyachenko
%A K. S. Kazarian
%T On sets of convergence and divergence of multiple orthogonal series
%J Sbornik. Mathematics
%D 2002
%P 1281-1301
%V 193
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2002_193_9_a1/
%G en
%F SM_2002_193_9_a1
M. I. Dyachenko; K. S. Kazarian. On sets of convergence and divergence of multiple orthogonal series. Sbornik. Mathematics, Tome 193 (2002) no. 9, pp. 1281-1301. http://geodesic.mathdoc.fr/item/SM_2002_193_9_a1/

[1] Ulyanov P. L., “O rabotakh N. N. Luzina po metricheskoi teorii funktsii”, UMN, 40:3 (1985), 15–70 | MR | Zbl

[2] Ulyanov P. L., “A. N. Kolmogorov i raskhodyaschiesya ryady Fure”, UMN, 38:4 (1983), 51–90 | MR | Zbl

[3] Kolmogoroff A., “Une serie de Fourier–Lebesgue divergente presque partout”, Fund. Math., 4 (1923), 324–328 | Zbl

[4] Bochkarev S. V., “Raskhodyaschiisya na mnozhestve polozhitelnoi mery ryad Fure dlya proizvolnoi ogranichennoi ortonormirovannoi sistemy”, Matem. sb., 98 (140):3 (11) (1975), 436–439 | MR

[5] Kazaryan K. S., “O nekotorykh voprosakh teorii ortogonalnykh ryadov”, Matem. sb., 119 (161):2 (1982), 278–294 | MR | Zbl

[6] Alexits G., Konvergenzprobleme der Orthogonalreihen, Verlag der Ungarischen Akademie der Wissenschaften, Budapest, 1960 | MR | Zbl

[7] Kazaryan K. S., Ulyanov P. L., “O probleme Aleksicha otnositelno raskhodimosti ortogonalnykh ryadov Fure”, Dokl. AN SSSR, 316 (1991), 542–546 | MR | Zbl

[8] Kazaryan K. S., “Raskhodyaschiesya ortogonalnye ryady Fure”, Matem. sb., 182:7 (1991), 985–1008 | MR

[9] Kachmazh S., Shteingauz G., Teoriya ortogonalnykh ryadov, Fizmatlit, M., 1958 | MR

[10] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR