$L_p$-solubility of the~Dirichlet problem for the~heat equation
Sbornik. Mathematics, Tome 193 (2002) no. 9, pp. 1243-1279

Voir la notice de l'article provenant de la source Math-Net.Ru

The Dirichlet problem for the heat equation is considered in bounded and unbounded domains of paraboloid type with isolated characteristic points at the boundary. Necessary and sufficient conditions in terms of the weight ensuring the unique solubility of this problem in weighted Sobolev $L_p$-spaces are found. In particular, a criterion for the solubility of the problem in the classical Sobolev space $W_{p,0}^{2,1}$ is established in the case when the domain is a ball.
@article{SM_2002_193_9_a0,
     author = {Yu. A. Alkhutov},
     title = {$L_p$-solubility of {the~Dirichlet} problem for the~heat equation},
     journal = {Sbornik. Mathematics},
     pages = {1243--1279},
     publisher = {mathdoc},
     volume = {193},
     number = {9},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_9_a0/}
}
TY  - JOUR
AU  - Yu. A. Alkhutov
TI  - $L_p$-solubility of the~Dirichlet problem for the~heat equation
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1243
EP  - 1279
VL  - 193
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_9_a0/
LA  - en
ID  - SM_2002_193_9_a0
ER  - 
%0 Journal Article
%A Yu. A. Alkhutov
%T $L_p$-solubility of the~Dirichlet problem for the~heat equation
%J Sbornik. Mathematics
%D 2002
%P 1243-1279
%V 193
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_9_a0/
%G en
%F SM_2002_193_9_a0
Yu. A. Alkhutov. $L_p$-solubility of the~Dirichlet problem for the~heat equation. Sbornik. Mathematics, Tome 193 (2002) no. 9, pp. 1243-1279. http://geodesic.mathdoc.fr/item/SM_2002_193_9_a0/