$L_p$-solubility of the Dirichlet problem for the heat equation
Sbornik. Mathematics, Tome 193 (2002) no. 9, pp. 1243-1279 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Dirichlet problem for the heat equation is considered in bounded and unbounded domains of paraboloid type with isolated characteristic points at the boundary. Necessary and sufficient conditions in terms of the weight ensuring the unique solubility of this problem in weighted Sobolev $L_p$-spaces are found. In particular, a criterion for the solubility of the problem in the classical Sobolev space $W_{p,0}^{2,1}$ is established in the case when the domain is a ball.
@article{SM_2002_193_9_a0,
     author = {Yu. A. Alkhutov},
     title = {$L_p$-solubility of {the~Dirichlet} problem for the~heat equation},
     journal = {Sbornik. Mathematics},
     pages = {1243--1279},
     year = {2002},
     volume = {193},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_9_a0/}
}
TY  - JOUR
AU  - Yu. A. Alkhutov
TI  - $L_p$-solubility of the Dirichlet problem for the heat equation
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1243
EP  - 1279
VL  - 193
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_9_a0/
LA  - en
ID  - SM_2002_193_9_a0
ER  - 
%0 Journal Article
%A Yu. A. Alkhutov
%T $L_p$-solubility of the Dirichlet problem for the heat equation
%J Sbornik. Mathematics
%D 2002
%P 1243-1279
%V 193
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2002_193_9_a0/
%G en
%F SM_2002_193_9_a0
Yu. A. Alkhutov. $L_p$-solubility of the Dirichlet problem for the heat equation. Sbornik. Mathematics, Tome 193 (2002) no. 9, pp. 1243-1279. http://geodesic.mathdoc.fr/item/SM_2002_193_9_a0/

[1] Petrovskii I. G., “O reshenii pervoi kraevoi zadachi dlya uravneniya teploprovodnosti”, Uch. zapiski MGU, 1934, no. 2, 55–59 | MR | Zbl

[2] Landis E. M., “Neobkhodimoe i dostatochnoe uslovie regulyarnosti granichnoi tochki dlya uravneniya teploprovodnosti”, Dokl. AN SSSR, 185:3 (1969), 517–520 | MR | Zbl

[3] Evans L. C., Gariepy R. F., “Wiener's criterion for the heat equation”, Arch. Ration. Mech. Anal., 78:4 (1982), 293–314 | DOI | MR | Zbl

[4] Mikhailov V. P., “O zadache Dirikhle dlya parabolicheskogo uravneniya, I”, Matem. sb., 61:1 (1963), 40–64 | MR

[5] Kondratev V. A., “Kraevye zadachi dlya parabolicheskikh uravnenii v zamknutykh oblastyakh”, Tr. MMO, 15, URSS, M., 1966, 400–451 | MR | Zbl

[6] Krylov N. V., “Gladkost funktsii vyigrysha dlya upravlyaemogo diffuzionnogo protsessa v oblasti”, Izv. AN SSSR. Ser. matem., 53:1 (1989), 66–96 | MR | Zbl

[7] Muckenhoupt B., “Weighted norm inequalities for the Hardy maximal function”, Trans. Amer. Math. Soc., 165 (1972), 207–226 | DOI | MR | Zbl

[8] Coifman R. R., Fefferman C., “Weighted norm inequalities for maximal functions and singular integrals”, Studia Math., 51 (1974), 241–250 | MR | Zbl

[9] Muckenhoupt B., “Hardy's inequality with weights”, Studia Math., 44:1 (1972), 31–38 | MR | Zbl

[10] Stein E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, Princeton, 1993 | MR | Zbl

[11] Mazya V. G., Prostranstva Soboleva, Izd-vo LGU, L., 1985 | Zbl

[12] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[13] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR