Topological and metric properties of a one-dimensional dynamical system
Sbornik. Mathematics, Tome 193 (2002) no. 8, pp. 1203-1242 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The iterates of the real rational function $s_{a,b}(x)=b-ax/(1+x^2)$ are studied in their dependence on the parameters $a,b\in\mathbb R$. The parameter ranges corresponding to regular and chaotic dynamical behaviour of the system are determined. In particular, an analogue of Jakobson's theorem is proved for a two-parameter family of one-dimensional maps close to a certain map with a neutral fixed point.
@article{SM_2002_193_8_a4,
     author = {G. S. Chakvetadze},
     title = {Topological and metric properties of a one-dimensional dynamical system},
     journal = {Sbornik. Mathematics},
     pages = {1203--1242},
     year = {2002},
     volume = {193},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_8_a4/}
}
TY  - JOUR
AU  - G. S. Chakvetadze
TI  - Topological and metric properties of a one-dimensional dynamical system
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1203
EP  - 1242
VL  - 193
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_8_a4/
LA  - en
ID  - SM_2002_193_8_a4
ER  - 
%0 Journal Article
%A G. S. Chakvetadze
%T Topological and metric properties of a one-dimensional dynamical system
%J Sbornik. Mathematics
%D 2002
%P 1203-1242
%V 193
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2002_193_8_a4/
%G en
%F SM_2002_193_8_a4
G. S. Chakvetadze. Topological and metric properties of a one-dimensional dynamical system. Sbornik. Mathematics, Tome 193 (2002) no. 8, pp. 1203-1242. http://geodesic.mathdoc.fr/item/SM_2002_193_8_a4/

[1] O'Cairbre F., O'Farrell A. G., O'Reilly A., “Bistability, bifurcation and chaos in a laser system”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5:4 (1995), 1021–1031 | DOI | MR | Zbl

[2] Jakobson M., “Absolutely continuous invariant measures for one-parameter families of one-dimensional maps”, Comm. Math. Phys., 81 (1981), 39–88 | DOI | MR | Zbl

[3] Costa M. J., Chaotic behaviour of one-dimensional saddle-node horseshoes, Preprint CMA, 2001 | MR

[4] Homburg A. J., Young T., Jakobson's theorem near saddle-node bifurcations, Preprint, 2001

[5] Aaronson J., An introduction to infinite ergodic theory, Math. Surveys Monogr., 50, Amer. Math. Soc., Providence, 1997 | MR | Zbl

[6] Katok A., Hasselblatt B., Introduction to the modern theory of dynamical systems, Cambridge Univ. Press, Cambridge, 1995 | MR

[7] Benedicks M., Carleson L., “The dynamics of the Hénon map”, Ann. of Math. (2), 133:1 (1991), 73–169 | DOI | MR | Zbl

[8] Jakobson M., Świa̧tek G., “Metric properties of non-renormalizable $S$-unimodal maps. I: Induced expansion and invariant measures”, Ergodic Theory Dynam. Systems, 14:4 (1994), 721–755 | DOI | MR | Zbl

[9] Jakobson M., “Uniformly scaled Markov partitions for unimodal maps”, J. Math. Sci. (New York), 95:5 (1999), 2583–2608 | DOI | MR | Zbl

[10] Akhalaya Sh. I., Stepin A. M., “Ob invariantnykh merakh neszhimayuschikh otobrazhenii”, Soobscheniya AN Gruzii, 100:3 (1980), 549–552 | MR | Zbl

[11] Young L.-S., Recurrence times and rates of mixing, Preprint, 1997 | MR

[12] Yakobson M. V., “Ergodicheskaya teoriya odnomernykh otobrazhenii”, Itogi nauki i tekhniki. Sovrem. probl. matem. Fundam. napr., 2, VINITI, M., 1985, 204–226 | MR