Differential geometry of quasi-Sasakian manifolds
Sbornik. Mathematics, Tome 193 (2002) no. 8, pp. 1173-1201 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The full system of structure equations of a quasi-Sasakian structure is obtained. The structure of the main tensors on a quasi-Sasakian manifold (the Riemann–Christoffel tensor, the Ricci tensor, and other tensors) is studied on this basis. Interesting characterizations of quasi-Sasakian Einstein manifolds are obtained. Additional symmetry properties of the Riemann–Christoffel tensor are discovered and used for distinguishing a new class of $CR_1$ quasi-Sasakian manifolds. An exhaustive description of the local structure of manifolds in this class is given. A complete classification (up to the $\mathscr B$-transformation of the metric) is obtained for manifolds in this class having additional properties of the isotropy kind.
@article{SM_2002_193_8_a3,
     author = {V. F. Kirichenko and A. R. Rustanov},
     title = {Differential geometry of {quasi-Sasakian} manifolds},
     journal = {Sbornik. Mathematics},
     pages = {1173--1201},
     year = {2002},
     volume = {193},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_8_a3/}
}
TY  - JOUR
AU  - V. F. Kirichenko
AU  - A. R. Rustanov
TI  - Differential geometry of quasi-Sasakian manifolds
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1173
EP  - 1201
VL  - 193
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_8_a3/
LA  - en
ID  - SM_2002_193_8_a3
ER  - 
%0 Journal Article
%A V. F. Kirichenko
%A A. R. Rustanov
%T Differential geometry of quasi-Sasakian manifolds
%J Sbornik. Mathematics
%D 2002
%P 1173-1201
%V 193
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2002_193_8_a3/
%G en
%F SM_2002_193_8_a3
V. F. Kirichenko; A. R. Rustanov. Differential geometry of quasi-Sasakian manifolds. Sbornik. Mathematics, Tome 193 (2002) no. 8, pp. 1173-1201. http://geodesic.mathdoc.fr/item/SM_2002_193_8_a3/

[1] Chern S.-S., “Pseudogroupes continus infinis”, Colloques Internat. Centre Nat. Rech. Sci., 52 (1953), 119–136 | MR | Zbl

[2] Gray J. W., “Some global properties of contact structures”, Ann. of Math. (2), 69:2 (1959), 421–450 | DOI | MR | Zbl

[3] Sasaki S., “On differentiable manifolds with certain structures which are closely related to almost contact structure, I”, Tôhoku Math. J. (2), 12:3 (1960), 459–476 | DOI | MR | Zbl

[4] Blair D. E., Contact manifolds in Riemannian geometry, Lecture Notes in Math., 509, Springer-Verlag, Berlin, 1976 | MR | Zbl

[5] Kirichenko V. F., “Metody obobschennoi ermitovoi geometrii v teorii pochti kontaktnykh mnogoobrazii”, Itogi nauki i tekhn. Problemy geometrii, 18, VINITI, M., 1986, 25–71 | MR

[6] Kirichenko V. F., “Aksioma $\Phi$-golomorfnykh ploskostei v kontaktnoi metricheskoi geometrii”, Izv. AN SSSR. Ser. matem., 48:4 (1984), 711–739 | MR

[7] Kirichenko V. F., “Generalized quasi-Kaehlerian manifolds and axioms of $CR$-submanifolds in generalized Hermitian geometry, I”, Geom. Dedicata, 51 (1994), 75–104 | DOI | MR | Zbl

[8] Kirichenko V. F., “Generalized quasi-Kaehlerian manifolds and axioms of $CR$-submanifolds in generalized Hermitian geometry, II”, Geom. Dedicata, 52 (1994), 53–85 | DOI | MR | Zbl

[9] Blair D. E., “The theory of quasi-Sasakian structures”, J. Differential Geom., 1 (1967), 331–345 | MR | Zbl

[10] Tanno S., “Quasi-Sasakian structures of rank $2p+1$”, J. Differential Geom., 5 (1971), 317–324 | MR | Zbl

[11] Kanemaki Sh., “Quasi-Sasakian manifolds”, Tôhoku Math. J. (2), 29 (1977), 227–233 | DOI | MR | Zbl

[12] Yanamoto H., “Quasi-Sasakian hypersurfaces in almost Hermitian manifolds”, Res. Rep. Nagaoka Tech. College, 5:2 (1969), 149–158 | MR | Zbl

[13] Kanemaki Sh., “Products of $f$-manifolds”, TRU Math., 10 (1974), 11–17 | MR | Zbl

[14] Tanno S., “Sasakian manifolds with constant $\varphi$-holomorphic sectional curvature”, Tôhoku Math. J. (2), 21 (1969), 501–507 | DOI | MR | Zbl

[15] Ogiue K., “On almost contact manifolds admitting axiom of planes and axioms of free mobility”, Kodai Math. Semin. Rep., 16 (1964), 223–232 | DOI | MR | Zbl

[16] Ishihara I., “Anti-invariant submanifolds of a Sasakian space forms”, Kodai Math. J., 2 (1979), 171–186 | DOI | MR | Zbl

[17] Kobayashi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, Nauka, M., 1981

[18] Kiritchenko V. F., “Sur le géométrie des variétés approximativement cosymplectiques”, C. R. Acad. Sci. Paris. Sér. I. Math., 295 (1982), 673–676 | MR | Zbl

[19] Kobayashi S., “Principal fibre bundles with the 1-dimensional toroidal group”, Tôhoku Math. J. (2), 8 (1956), 29–45 | DOI | MR | Zbl