Differential geometry of quasi-Sasakian manifolds
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 193 (2002) no. 8, pp. 1173-1201
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The full system of structure equations of a quasi-Sasakian structure is obtained. The structure of the main tensors on a quasi-Sasakian manifold (the Riemann–Christoffel tensor, the Ricci tensor, and other tensors) is studied on this basis. Interesting characterizations of quasi-Sasakian Einstein manifolds are obtained. Additional symmetry properties of the Riemann–Christoffel tensor are discovered and  used for distinguishing a new class of $CR_1$ quasi-Sasakian manifolds. An exhaustive description of the local structure of manifolds in this class is given. A complete classification (up to the $\mathscr B$-transformation of the metric) is obtained for manifolds in this class  having  additional properties of the isotropy kind.
			
            
            
            
          
        
      @article{SM_2002_193_8_a3,
     author = {V. F. Kirichenko and A. R. Rustanov},
     title = {Differential geometry of {quasi-Sasakian} manifolds},
     journal = {Sbornik. Mathematics},
     pages = {1173--1201},
     publisher = {mathdoc},
     volume = {193},
     number = {8},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_8_a3/}
}
                      
                      
                    V. F. Kirichenko; A. R. Rustanov. Differential geometry of quasi-Sasakian manifolds. Sbornik. Mathematics, Tome 193 (2002) no. 8, pp. 1173-1201. http://geodesic.mathdoc.fr/item/SM_2002_193_8_a3/