On the irrationality measure for a~$q$-analogue of $\zeta(2)$
Sbornik. Mathematics, Tome 193 (2002) no. 8, pp. 1151-1172
Voir la notice de l'article provenant de la source Math-Net.Ru
A Liouville-type estimate is proved for the irrationality measure of the quantities
$$
\zeta_q(2)
=\sum_{n=1}^\infty\frac{q^n}{(1-q^n)^2}
$$
with $q^{-1}\in\mathbb Z\setminus\{0,\pm1\}$.
The proof is based on the application of a $q$-analogue of the arithmetic method developed by Chudnovsky, Rukhadze, and Hata and of the transformation group for hypergeometric
series–the group-structure approach introduced by Rhin and Viola.
@article{SM_2002_193_8_a2,
author = {W. V. Zudilin},
title = {On the irrationality measure for a~$q$-analogue of $\zeta(2)$},
journal = {Sbornik. Mathematics},
pages = {1151--1172},
publisher = {mathdoc},
volume = {193},
number = {8},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2002_193_8_a2/}
}
W. V. Zudilin. On the irrationality measure for a~$q$-analogue of $\zeta(2)$. Sbornik. Mathematics, Tome 193 (2002) no. 8, pp. 1151-1172. http://geodesic.mathdoc.fr/item/SM_2002_193_8_a2/