On the irrationality measure for a~$q$-analogue of $\zeta(2)$
Sbornik. Mathematics, Tome 193 (2002) no. 8, pp. 1151-1172

Voir la notice de l'article provenant de la source Math-Net.Ru

A Liouville-type estimate is proved for the irrationality measure of the quantities $$ \zeta_q(2) =\sum_{n=1}^\infty\frac{q^n}{(1-q^n)^2} $$ with $q^{-1}\in\mathbb Z\setminus\{0,\pm1\}$. The proof is based on the application of a $q$-analogue of the arithmetic method developed by Chudnovsky, Rukhadze, and Hata and of the transformation group for hypergeometric series–the group-structure approach introduced by Rhin and Viola.
@article{SM_2002_193_8_a2,
     author = {W. V. Zudilin},
     title = {On the irrationality measure for a~$q$-analogue of $\zeta(2)$},
     journal = {Sbornik. Mathematics},
     pages = {1151--1172},
     publisher = {mathdoc},
     volume = {193},
     number = {8},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_8_a2/}
}
TY  - JOUR
AU  - W. V. Zudilin
TI  - On the irrationality measure for a~$q$-analogue of $\zeta(2)$
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1151
EP  - 1172
VL  - 193
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_8_a2/
LA  - en
ID  - SM_2002_193_8_a2
ER  - 
%0 Journal Article
%A W. V. Zudilin
%T On the irrationality measure for a~$q$-analogue of $\zeta(2)$
%J Sbornik. Mathematics
%D 2002
%P 1151-1172
%V 193
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_8_a2/
%G en
%F SM_2002_193_8_a2
W. V. Zudilin. On the irrationality measure for a~$q$-analogue of $\zeta(2)$. Sbornik. Mathematics, Tome 193 (2002) no. 8, pp. 1151-1172. http://geodesic.mathdoc.fr/item/SM_2002_193_8_a2/