On the irrationality measure for a $q$-analogue of $\zeta(2)$
Sbornik. Mathematics, Tome 193 (2002) no. 8, pp. 1151-1172 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Liouville-type estimate is proved for the irrationality measure of the quantities $$ \zeta_q(2) =\sum_{n=1}^\infty\frac{q^n}{(1-q^n)^2} $$ with $q^{-1}\in\mathbb Z\setminus\{0,\pm1\}$. The proof is based on the application of a $q$-analogue of the arithmetic method developed by Chudnovsky, Rukhadze, and Hata and of the transformation group for hypergeometric series–the group-structure approach introduced by Rhin and Viola.
@article{SM_2002_193_8_a2,
     author = {W. V. Zudilin},
     title = {On the irrationality measure for a~$q$-analogue of $\zeta(2)$},
     journal = {Sbornik. Mathematics},
     pages = {1151--1172},
     year = {2002},
     volume = {193},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_8_a2/}
}
TY  - JOUR
AU  - W. V. Zudilin
TI  - On the irrationality measure for a $q$-analogue of $\zeta(2)$
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1151
EP  - 1172
VL  - 193
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_8_a2/
LA  - en
ID  - SM_2002_193_8_a2
ER  - 
%0 Journal Article
%A W. V. Zudilin
%T On the irrationality measure for a $q$-analogue of $\zeta(2)$
%J Sbornik. Mathematics
%D 2002
%P 1151-1172
%V 193
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2002_193_8_a2/
%G en
%F SM_2002_193_8_a2
W. V. Zudilin. On the irrationality measure for a $q$-analogue of $\zeta(2)$. Sbornik. Mathematics, Tome 193 (2002) no. 8, pp. 1151-1172. http://geodesic.mathdoc.fr/item/SM_2002_193_8_a2/

[1] Bézivin J.-P., “Indépendence linéaire des valeurs des solutions transcendantes de certaines équations fonctionelles”, Manuscripta Math., 61 (1988), 103–129 | DOI | MR | Zbl

[2] Borwein P., “On the irrationality of $\sum\frac1{q^n+r}$”, J. Number Theory, 37 (1991), 253–259 | DOI | MR | Zbl

[3] Duverney D., “Irrationalité d'un $q$-analogue de $\zeta(2)$”, C. R. Acad. Sci. Paris Sér. I Math., 321:10 (1995), 1287–1289 | MR | Zbl

[4] Nesterenko Yu. V., “Modulyarnye funktsii i voprosy transtsendentnosti”, Matem. sb., 187:9 (1996), 65–96 | MR | Zbl

[5] Nesterenko Yu. V., “O mere algebraicheskoi nezavisimosti znachenii funktsii Ramanudzhana”, Tr. MIAN, 218, Nauka, M., 1997, 299–334 | MR | Zbl

[6] Rhin G., Viola C., “On a permutation group related to $\zeta(2)$”, Acta Arith., 77:1 (1996), 23–56 | MR | Zbl

[7] Rhin G., Viola C., “The group structure for $\zeta(3)$”, Acta Arith., 97:3 (2001), 269–293 | DOI | MR | Zbl

[8] Nesterenko Yu. V., “Integral identities and constructions of approximations to zeta-values”, Actes des 12èmes rencontres arithmétiques de Caen (29–30 juin 2001), 2003 ; J. Théor. Nombres Bordeaux (to appear) | MR

[9] Zudilin W., Arithmetic of linear forms involving odd zeta values, http://arXiv.org/abs/math.NT/0206176 | MR

[10] Bundschuh P., Väänänen K., “Arithmetical investigations of a certain infinite product”, Compositio Math., 91 (1994), 175–199 | MR | Zbl

[11] Zudilin W., “Remarks on irrationality of $q$-harmonic series”, Manuscripta Math., 107:4 (2002), 463–477 | DOI | MR | Zbl

[12] Apéry R., “Irrationalité de $\zeta(2)$ et $\zeta(3)$”, Astérisque, 61 (1979), 11–13 | MR | Zbl

[13] Van Assche W., “Little $q$-Legendre polynomials and irrationality of certain Lambert series”, Ramanujan J., 5:3 (2001), 295–310 | DOI | MR | Zbl

[14] Gasper G., Rakhman M., Bazisnye gipergeometricheskie ryady, Mir, M., 1993 | MR | Zbl

[15] Prasolov V. V., Mnogochleny, Klassicheskie napravleniya v matematike, MTsNMO, M., 2001

[16] Van der Varden B. L., Algebra, Nauka, M., 1976 | MR

[17] Mertens F., “Ueber einige asymptotische Gesetze der Zahlentheorie”, J. Reine Angew. Math., 77:4 (1874), 289–338

[18] Hardy G. H., Wright E. M., An introduction to the theory of numbers, Oxford Univ. Press, Oxford, 1979 | MR | Zbl

[19] Borwein J. M., Borwein P. B., Pi and the AGM. A study in analytic number theory and computational complexity, Canad. Math. Soc. Ser. Monogr. Adv. Texts, Wiley, New York, 1987 | MR | Zbl

[20] Danilov L. V., “Ratsionalnye priblizheniya nekotorykh funktsii v ratsionalnykh tochkakh”, Matem. zametki, 24:4 (1978), 449–458 | MR | Zbl

[21] Van Assche W., “Approximation theory and analytic number theory”, Special functions and differential equations (Madras, 1997), eds. K. Srinivasa Rao et al., Allied Publ., New Delhi, 1998, 336–355 | MR | Zbl