Topological analysis of the~two-centre problem on the~two-dimensional
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 193 (2002) no. 8, pp. 1103-1138
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The two-centre problem on the two-dimensional sphere (with the standard metric of constant positive curvature) is investigated from the topological point of view. The Fomenko–Zieschang invariants are constructed, which completely describe the topology of the Liouville foliations
on isoenergy surfaces of this system. Various types of motion in the configuration space (regular motions and limit motions  corresponding to bifurcations of Liouville tori)
are described. The connection between Fomenko–Zieschang invariants (marked molecules) and various types of motion is considered.
			
            
            
            
          
        
      @article{SM_2002_193_8_a0,
     author = {T. G. Vozmischeva and A. A. Oshemkov},
     title = {Topological analysis of the~two-centre problem on the~two-dimensional},
     journal = {Sbornik. Mathematics},
     pages = {1103--1138},
     publisher = {mathdoc},
     volume = {193},
     number = {8},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_8_a0/}
}
                      
                      
                    TY - JOUR AU - T. G. Vozmischeva AU - A. A. Oshemkov TI - Topological analysis of the~two-centre problem on the~two-dimensional JO - Sbornik. Mathematics PY - 2002 SP - 1103 EP - 1138 VL - 193 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2002_193_8_a0/ LA - en ID - SM_2002_193_8_a0 ER -
T. G. Vozmischeva; A. A. Oshemkov. Topological analysis of the~two-centre problem on the~two-dimensional. Sbornik. Mathematics, Tome 193 (2002) no. 8, pp. 1103-1138. http://geodesic.mathdoc.fr/item/SM_2002_193_8_a0/