Topological analysis of the~two-centre problem on the~two-dimensional
Sbornik. Mathematics, Tome 193 (2002) no. 8, pp. 1103-1138

Voir la notice de l'article provenant de la source Math-Net.Ru

The two-centre problem on the two-dimensional sphere (with the standard metric of constant positive curvature) is investigated from the topological point of view. The Fomenko–Zieschang invariants are constructed, which completely describe the topology of the Liouville foliations on isoenergy surfaces of this system. Various types of motion in the configuration space (regular motions and limit motions corresponding to bifurcations of Liouville tori) are described. The connection between Fomenko–Zieschang invariants (marked molecules) and various types of motion is considered.
@article{SM_2002_193_8_a0,
     author = {T. G. Vozmischeva and A. A. Oshemkov},
     title = {Topological analysis of the~two-centre problem on the~two-dimensional},
     journal = {Sbornik. Mathematics},
     pages = {1103--1138},
     publisher = {mathdoc},
     volume = {193},
     number = {8},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_8_a0/}
}
TY  - JOUR
AU  - T. G. Vozmischeva
AU  - A. A. Oshemkov
TI  - Topological analysis of the~two-centre problem on the~two-dimensional
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1103
EP  - 1138
VL  - 193
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_8_a0/
LA  - en
ID  - SM_2002_193_8_a0
ER  - 
%0 Journal Article
%A T. G. Vozmischeva
%A A. A. Oshemkov
%T Topological analysis of the~two-centre problem on the~two-dimensional
%J Sbornik. Mathematics
%D 2002
%P 1103-1138
%V 193
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_8_a0/
%G en
%F SM_2002_193_8_a0
T. G. Vozmischeva; A. A. Oshemkov. Topological analysis of the~two-centre problem on the~two-dimensional. Sbornik. Mathematics, Tome 193 (2002) no. 8, pp. 1103-1138. http://geodesic.mathdoc.fr/item/SM_2002_193_8_a0/