Divisorial contractions to 3-dimensional $cDV$ points
Sbornik. Mathematics, Tome 193 (2002) no. 7, pp. 1091-1102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Divisorial contractions to singularities of the forms $xy+z^n+u^n=0$ with $n\geqslant 3$ and $xy+z^3+u^4=0$ are classified in the Mori category.
@article{SM_2002_193_7_a6,
     author = {I. Yu. Fedorov},
     title = {Divisorial contractions to 3-dimensional $cDV$ points},
     journal = {Sbornik. Mathematics},
     pages = {1091--1102},
     year = {2002},
     volume = {193},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_7_a6/}
}
TY  - JOUR
AU  - I. Yu. Fedorov
TI  - Divisorial contractions to 3-dimensional $cDV$ points
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1091
EP  - 1102
VL  - 193
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_7_a6/
LA  - en
ID  - SM_2002_193_7_a6
ER  - 
%0 Journal Article
%A I. Yu. Fedorov
%T Divisorial contractions to 3-dimensional $cDV$ points
%J Sbornik. Mathematics
%D 2002
%P 1091-1102
%V 193
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2002_193_7_a6/
%G en
%F SM_2002_193_7_a6
I. Yu. Fedorov. Divisorial contractions to 3-dimensional $cDV$ points. Sbornik. Mathematics, Tome 193 (2002) no. 7, pp. 1091-1102. http://geodesic.mathdoc.fr/item/SM_2002_193_7_a6/

[1] Reid M., “Young person's guide to canonical singularities”, Proc. Sympos. Pure Math., 46, 1987, 343–416 | MR

[2] Danilov V. I., “Biratsionalnaya geometriya toricheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 46:5 (1982), 971–982 | MR

[3] Markushevich D. G., “Kanonicheskie osobennosti trekhmernykh giperpoverkhnostei”, Izv. AN SSSR. Ser. matem., 49:2 (1985), 334–368 | MR | Zbl

[4] Reid M., “Minimal models of canonical threefolds”, Adv. Stud. Pure Math., 1, 1983, 131–180 | MR | Zbl

[5] Morrison D., Stevens G., “Terminal quotient singularities in dimention three and four”, Proc. Amer. Math. Soc., 90 (1984), 15–20 | DOI | MR | Zbl

[6] Mori S., “On 3-dimentional terminal singularities”, Nagoya Math. J., 98 (1985), 43–66 | MR | Zbl

[7] Kawamata Y., “Divisorial contractions to 3-dimentional terminal quotient singularities”, Higher-dimentional complex varieties (Trento, 1994), de Gruyter, Berlin, 1996, 241–246 | MR | Zbl

[8] Mori S., “Threefolds whose canonical bundles are not numerically effective”, Ann. of Math. (2), 116 (1982), 133–176 | DOI | MR | Zbl

[9] Cutkosky S., “Elementary contractions of Gorenstein threefolds”, Math. Ann., 280 (1988), 521–525 | DOI | MR | Zbl

[10] Luo T., “Divisorial contractions of threefolds: divisor to point”, Amer. J. Math., 120 (1998), 441–451 | DOI | MR | Zbl

[11] Corti A., “Singularities of linear systems and 3-fold birational geometry. Explicit Birational Geometry of 3-folds”, London Math. Soc. Lecture Note Ser., 281, 2000, 259–312 | MR | Zbl

[12] Corti A., Mella M., Birational geometry of terminal quartic 3-folds, I, E-print math.AG/0102096 | MR

[13] Kawakita M., Divisorial contractions in dimention three which contract divisor to smooth points, E-print math.AG/0005207 | MR

[14] Kawakita M., Divisorial contractions in dimension three which contract divisors to compound $A_1$ points, E-print math.AG/0010207 | MR

[15] Kawakita M., General elements in anticanonical systems of threefolds with divisorial contractions and applications to classification, E-print math.AG/0110050

[16] Kawamata Y., Matsuda K., Matsuki K., “Introduction to the minimal model program”, Algebraic Geometry (Sendai, 1985), Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 283–360 | MR

[17] Shokurov V. V., “Trekhmernye logperestroiki”, Izv. AN SSSR. Ser. matem., 56 (1992), 105–203 | Zbl

[18] Hayakawa T., “Blowing ups of 3-dimentional terminal singularities”, Publ. Res. Inst. Math. Sci., 35:3 (1999), 515–570 | DOI | MR | Zbl

[19] Fedorov I. Yu., “Razdutiya trekhmernykh terminalnykh osobennostei: $cA$ sluchai”, Matem. zametki, 71:3 (2002), 440–447 | MR | Zbl

[20] Kulikov Vik. S., “Vyrozhdeniya $K3$ poverkhnostei i poverkhnostei Enrikvesa”, Izv. An SSSR. Ser. matem., 41:5 (1977), 1008–1042 | MR | Zbl