Beta-integrals and finite orthogonal systems of Wilson polynomials
Sbornik. Mathematics, Tome 193 (2002) no. 7, pp. 1071-1089 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The integral $$ \frac1{2\pi}\int_{-\infty}^\infty\biggl|\frac{\prod_{k=1}^3\Gamma(a_k+is)} {\Gamma(2is)\Gamma(b+is)}\biggr|^2\,ds =\frac{\Gamma(b-a_1-a_2-a_3)\prod_{1\leqslant k<l\leqslant 3}\Gamma(a_k+a_l)} {\prod_{k=1}^3\Gamma(b-a_k)} $$ is calculated and the system of orthogonal polynomials with weight equal to the corresponding integrand is constructed. This weight decreases polynomially, therefore only finitely many of its moments converge. As a result the system of orthogonal polynomials is finite. Systems of orthogonal polynomials related to ${}_5H_5$-Dougall's formula and the Askey integral is also constructed. All the three systems consist of Wilson polynomials outside the domain of positiveness of the usual weight.
@article{SM_2002_193_7_a5,
     author = {Yu. A. Neretin},
     title = {Beta-integrals and finite orthogonal systems of {Wilson} polynomials},
     journal = {Sbornik. Mathematics},
     pages = {1071--1089},
     year = {2002},
     volume = {193},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_7_a5/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - Beta-integrals and finite orthogonal systems of Wilson polynomials
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1071
EP  - 1089
VL  - 193
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_7_a5/
LA  - en
ID  - SM_2002_193_7_a5
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T Beta-integrals and finite orthogonal systems of Wilson polynomials
%J Sbornik. Mathematics
%D 2002
%P 1071-1089
%V 193
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2002_193_7_a5/
%G en
%F SM_2002_193_7_a5
Yu. A. Neretin. Beta-integrals and finite orthogonal systems of Wilson polynomials. Sbornik. Mathematics, Tome 193 (2002) no. 7, pp. 1071-1089. http://geodesic.mathdoc.fr/item/SM_2002_193_7_a5/

[1] Wilson J. A., “Some hypergeometric orthogonal polynomials”, SIAM J. Math. Anal., 11:4 (1980), 690–701 | DOI | MR | Zbl

[2] Andrews G. E., Askey R., Roy R., Special functions, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[3] Koekoek R., Swarttouw R. F., Askey scheme of hypergeometric orthogonal polynomials and their $q$-analogues, Delft University of Technology, 1994 ; http://aw.twi.tudelft.nl/k̃oekoek/askey.html | Zbl

[4] De Branges L., “Tensor product spaces”, J. Math. Anal. Appl., 38 (1972), 109–148 | DOI | MR | Zbl

[5] Askey R., “Beta integrals and the associated orthogonal polynomials”, Number theory (Madras, 1987), Lecture Notes in Math., 1395, Springer-Verlag, Berlin, 1989, 84–121 | MR

[6] Rahman M., Suslov S. K., “The Pearson equation and the beta integrals”, SIAM J. Math. Anal., 25:2 (1994), 646–693 | DOI | MR | Zbl

[7] Askey R., Wilson J., “Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials”, Mem. Amer. Math. Soc., 54:319 (1985) | MR

[8] Gustafson R. A., “Some $q$-beta and Mellin–Barnes integrals on compact Lie groups and Lie algebras”, Trans. Amer. Math. Soc., 341:1 (1994), 69–119 | DOI | MR | Zbl

[9] Gustafson R. A., “Some $q$-beta integrals on $\operatorname{SU}(n)$ and $\operatorname{Sp}(n)$ that generalize the Askey–Wilson and Nasrallah–Rahman integrals”, SIAM J. Math. Anal., 25:2 (1994), 441–449 | DOI | MR | Zbl

[10] Romanovski V. I., “Sur quelques classes nouwels of polynomes orthogonaux”, Acad. Sci. Paris, 188 (1929), 1023–1025 | Zbl

[11] Askey R., “An integral of Ramanujan and orthogonal polynomials”, J. Indian Math. Soc. (N.S.), 51 (1987), 27–36 | MR | Zbl

[12] Lesky P. A., “Orthogonalitt von dualen Hahnpolynomen und continuous dualen Hahnpolynomen”, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, 204 (1996), 81–95 | MR

[13] Lesky P. A., “Endliche und unendliche Systeme von kontinuierlichen klassischen Orthogonalpolynomen”, Z. Angew. Math. Mech., 76:3 (1996), 181–184 | DOI | MR | Zbl

[14] Lesky P. A., “Unendliche und endliche Orthogonalsysteme von continuous Hahnpolynomen”, Results Math., 31:1–2 (1997), 127–135 | MR | Zbl

[15] Lesky P. A., “Einordnung der Polynome von Romanovski–Bessel in das Askey-Tableau”, Z. Angew. Math. Mech., 78:9 (1998), 646–648 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[16] Peetre J., “Correspondence principle for the quantized annulus, Romanovski polynomials, and Morse potential”, J. Funct. Anal., 117:2 (1993), 377–400 | DOI | MR | Zbl

[17] Borodin A., Olshanski G. I., Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes, arXiv: math.RT/0109194 | MR

[18] Slater L. J., Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966 | MR | Zbl

[19] Marichev O. I., Handbook of integral transforms of higher transcedental functions, Ellis Horwood, Chichester; John Willey, New York, 1983 | MR | Zbl

[20] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Dopolnitelnye glavy, t. 3, Nauka, M., 1986 | MR

[21] Flensted-Jensen M., Koornwinder T., “The convolution structure for Jacobi function expansions”, Ark. Mat., 11 (1973), 245–262 | DOI | MR | Zbl

[22] Koornwinder T. H., “Jacobi functions and analysis on noncompact semisimple Lie groups”, Special functions: group theoretical aspects and applications, eds. Askey R., Koornwinder T., Schempp W., Reidel, Dordrecht, 1984, 1–85 | MR | Zbl

[23] Koornwinder T. H., “Special orthogonal polynomial systems mapped onto each other by the Fourier–Jacobi transform”, Orthogonal polynomials and applications (Bar-le-Duc, 1984), Lecture Notes in Math., 1171, Springer-Verlag, Berlin, 1985, 174–183 | MR

[24] Koornwinder T. H., “Group theoretic interpretations of Askey's scheme of hypergeometric orthogonal polynomials”, Orthogonal polynomials and their applications (Segovia, 1986), Lecture Notes in Math., 1329, Springer, Berlin, 1988, 46–72 | MR

[25] Yakubovich S. B., Index transforms, World Scientific, London, 1996 | MR | Zbl

[26] Neretin Yu. A., “Indeksnoe gipergeometricheskoe preobrazovanie i imitatsiya analiza yader Berezina na giperbolicheskikh prostranstvakh”, Matem. sb., 192:3 (2001), 83–114 | MR | Zbl

[27] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. T. I. Gipergeometricheskaya funktsiya. Funktsiya Lezhandra, Nauka, M., 1973

[28] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ i proizvedenii, Fizmatgiz, M., 1963

[29] Rahman M., “An integral representation of a ${}_{10}\Phi_9$ and continuous bi-orthogonal ${}_{10}\Phi_9$ rational functions”, Canad. J. Math., 38 (1986), 605–618 | MR | Zbl

[30] Gasper G., Rakhman M., Bazisnye gipergeometricheskie ryady, Mir, M., 1993 | MR | Zbl

[31] Bailey W. N., Generalized hypergeometric series, Stechert-Hafner, New York, 1935 | MR

[32] Nassrallah B., Rahman M., “Projection formulas, a reproducing kernel and a generating function for $q$-Wilson polynomials”, SIAM J. Math. Anal., 16:1 (1985), 186–197 | DOI | MR | Zbl

[33] Nassrallah B., Rahman M., “A $q$-analogue of Appell's $F_1$ function and some quadratic transformation formulas for nonterminating basic hypergeometric series”, Rocky Mountain J. Math., 16 (1986), 63–82 | MR | Zbl

[34] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. T. II. Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974