Beta-integrals and finite orthogonal systems of Wilson polynomials
Sbornik. Mathematics, Tome 193 (2002) no. 7, pp. 1071-1089

Voir la notice de l'article provenant de la source Math-Net.Ru

The integral $$ \frac1{2\pi}\int_{-\infty}^\infty\biggl|\frac{\prod_{k=1}^3\Gamma(a_k+is)} {\Gamma(2is)\Gamma(b+is)}\biggr|^2\,ds =\frac{\Gamma(b-a_1-a_2-a_3)\prod_{1\leqslant k\leqslant 3}\Gamma(a_k+a_l)} {\prod_{k=1}^3\Gamma(b-a_k)} $$ is calculated and the system of orthogonal polynomials with weight equal to the corresponding integrand is constructed. This weight decreases polynomially, therefore only finitely many of its moments converge. As a result the system of orthogonal polynomials is finite. Systems of orthogonal polynomials related to ${}_5H_5$-Dougall's formula and the Askey integral is also constructed. All the three systems consist of Wilson polynomials outside the domain of positiveness of the usual weight.
@article{SM_2002_193_7_a5,
     author = {Yu. A. Neretin},
     title = {Beta-integrals and finite orthogonal systems of {Wilson} polynomials},
     journal = {Sbornik. Mathematics},
     pages = {1071--1089},
     publisher = {mathdoc},
     volume = {193},
     number = {7},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_7_a5/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - Beta-integrals and finite orthogonal systems of Wilson polynomials
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1071
EP  - 1089
VL  - 193
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_7_a5/
LA  - en
ID  - SM_2002_193_7_a5
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T Beta-integrals and finite orthogonal systems of Wilson polynomials
%J Sbornik. Mathematics
%D 2002
%P 1071-1089
%V 193
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_7_a5/
%G en
%F SM_2002_193_7_a5
Yu. A. Neretin. Beta-integrals and finite orthogonal systems of Wilson polynomials. Sbornik. Mathematics, Tome 193 (2002) no. 7, pp. 1071-1089. http://geodesic.mathdoc.fr/item/SM_2002_193_7_a5/